Computation of Entropy of Most Likelihood State Sequence Obtained from Non Homogeneous Fuzzy Hidden Markov Chain
The entropy of a possibilistic variable provides a measure of its uncertainty. An algorithm is proposed for computing the entropy of the most likelihood state sequence obtained from the Viterbi algorithm for Non Homogeneous Fuzzy Hidden Markov Chain (NHFHMC) which is a bivariate discrete process, wh...
Saved in:
Main Authors: | , |
---|---|
Language: | English |
Published: |
Science Faculty of Chiang Mai University
2019
|
Subjects: | |
Online Access: | http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=6257 http://cmuir.cmu.ac.th/jspui/handle/6653943832/66173 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-66173 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-661732019-08-21T09:18:23Z Computation of Entropy of Most Likelihood State Sequence Obtained from Non Homogeneous Fuzzy Hidden Markov Chain Sujatha Ramalingam Rajalaxmi Thasari Murali Triangular fuzzy number Possibility Space Conditional possibility Non - Homogeneous Fuzzy Markov Chain Fuzzy Hidden Markov Chain Entropy The entropy of a possibilistic variable provides a measure of its uncertainty. An algorithm is proposed for computing the entropy of the most likelihood state sequence obtained from the Viterbi algorithm for Non Homogeneous Fuzzy Hidden Markov Chain (NHFHMC) which is a bivariate discrete process, where is a non homogeneous fuzzy Markov chain on possibility space and is the sequence of observations such that the conditional possibility distribution of only depends on [8]. The Viterbi algorithm for NHFHMC is the algorithm for tracking the most likelihood hidden states of a process from a sequence of observations. An important problem while tracking a process is estimating the uncertainty present in the solution. To overcome this kind of uncertainty we have computed the entropy associated with that most likelihood state sequence and this entropy measure is given in triangular fuzzy number. 2019-08-21T09:18:23Z 2019-08-21T09:18:23Z 2015 Chiang Mai Journal of Science 42, 4 (Oct 2015), 1019 - 1030 0125-2526 http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=6257 http://cmuir.cmu.ac.th/jspui/handle/6653943832/66173 Eng Science Faculty of Chiang Mai University |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
topic |
Triangular fuzzy number Possibility Space Conditional possibility Non - Homogeneous Fuzzy Markov Chain Fuzzy Hidden Markov Chain Entropy |
spellingShingle |
Triangular fuzzy number Possibility Space Conditional possibility Non - Homogeneous Fuzzy Markov Chain Fuzzy Hidden Markov Chain Entropy Sujatha Ramalingam Rajalaxmi Thasari Murali Computation of Entropy of Most Likelihood State Sequence Obtained from Non Homogeneous Fuzzy Hidden Markov Chain |
description |
The entropy of a possibilistic variable provides a measure of its uncertainty. An algorithm is proposed for computing the entropy of the most likelihood state sequence obtained from the Viterbi algorithm for Non Homogeneous Fuzzy Hidden Markov Chain (NHFHMC) which is a bivariate discrete process, where is a non homogeneous fuzzy Markov chain on possibility space and is the sequence of observations such that the conditional possibility distribution of only depends on [8]. The Viterbi algorithm for NHFHMC is the algorithm for tracking the most likelihood hidden states of a process from a sequence of observations. An important problem while tracking a process is estimating the uncertainty present in the solution. To overcome this kind of uncertainty we have computed the entropy associated with that most likelihood state sequence and this entropy measure is given in triangular fuzzy number. |
author |
Sujatha Ramalingam Rajalaxmi Thasari Murali |
author_facet |
Sujatha Ramalingam Rajalaxmi Thasari Murali |
author_sort |
Sujatha Ramalingam |
title |
Computation of Entropy of Most Likelihood State Sequence Obtained from Non Homogeneous Fuzzy Hidden Markov Chain |
title_short |
Computation of Entropy of Most Likelihood State Sequence Obtained from Non Homogeneous Fuzzy Hidden Markov Chain |
title_full |
Computation of Entropy of Most Likelihood State Sequence Obtained from Non Homogeneous Fuzzy Hidden Markov Chain |
title_fullStr |
Computation of Entropy of Most Likelihood State Sequence Obtained from Non Homogeneous Fuzzy Hidden Markov Chain |
title_full_unstemmed |
Computation of Entropy of Most Likelihood State Sequence Obtained from Non Homogeneous Fuzzy Hidden Markov Chain |
title_sort |
computation of entropy of most likelihood state sequence obtained from non homogeneous fuzzy hidden markov chain |
publisher |
Science Faculty of Chiang Mai University |
publishDate |
2019 |
url |
http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=6257 http://cmuir.cmu.ac.th/jspui/handle/6653943832/66173 |
_version_ |
1681426405579030528 |