Fixed point properties of C*-algebras
This paper derives relations between the following properties of a C*-algebra: (i) it has the fpp, (ii) the spectrum of every self-adjoint element is finite, (iii) it is finite dimensional, (iv) it is generated by two projections p and q and the spectrum of p+q is homeomorphic to a compact ordinal α...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-77957126516&partnerID=40&md5=8531ac27bace0316969d9894a74ff952 http://cmuir.cmu.ac.th/handle/6653943832/6618 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-6618 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-66182014-08-30T03:24:24Z Fixed point properties of C*-algebras Dhompongsa S. Fupinwong W. Lawton W. This paper derives relations between the following properties of a C*-algebra: (i) it has the fpp, (ii) the spectrum of every self-adjoint element is finite, (iii) it is finite dimensional, (iv) it is generated by two projections p and q and the spectrum of p+q is homeomorphic to a compact ordinal α<ωω (v) it is generated by two projections and the real Banach algebra generated by every self-adjoint element has the w-fpp, (vi) it has the w-fpp. We prove that (i) implies (ii) using standard fixed point theory, give two proofs that (ii) implies (iii), one based on a result of Ogasawara and another based on geometric properties of projections, and observe that (iii) implies (i) by Brouwer's fixed point theorem. We prove that (iv) implies (v) using the structure of the universal C*-algebra generated by two projections, and discuss a conjecture that ensures (iv) implies (vi). © 2010 Elsevier Inc. 2014-08-30T03:24:24Z 2014-08-30T03:24:24Z 2011 Article 0022247X 10.1016/j.jmaa.2010.08.032 http://www.scopus.com/inward/record.url?eid=2-s2.0-77957126516&partnerID=40&md5=8531ac27bace0316969d9894a74ff952 http://cmuir.cmu.ac.th/handle/6653943832/6618 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
This paper derives relations between the following properties of a C*-algebra: (i) it has the fpp, (ii) the spectrum of every self-adjoint element is finite, (iii) it is finite dimensional, (iv) it is generated by two projections p and q and the spectrum of p+q is homeomorphic to a compact ordinal α<ωω (v) it is generated by two projections and the real Banach algebra generated by every self-adjoint element has the w-fpp, (vi) it has the w-fpp. We prove that (i) implies (ii) using standard fixed point theory, give two proofs that (ii) implies (iii), one based on a result of Ogasawara and another based on geometric properties of projections, and observe that (iii) implies (i) by Brouwer's fixed point theorem. We prove that (iv) implies (v) using the structure of the universal C*-algebra generated by two projections, and discuss a conjecture that ensures (iv) implies (vi). © 2010 Elsevier Inc. |
format |
Article |
author |
Dhompongsa S. Fupinwong W. Lawton W. |
spellingShingle |
Dhompongsa S. Fupinwong W. Lawton W. Fixed point properties of C*-algebras |
author_facet |
Dhompongsa S. Fupinwong W. Lawton W. |
author_sort |
Dhompongsa S. |
title |
Fixed point properties of C*-algebras |
title_short |
Fixed point properties of C*-algebras |
title_full |
Fixed point properties of C*-algebras |
title_fullStr |
Fixed point properties of C*-algebras |
title_full_unstemmed |
Fixed point properties of C*-algebras |
title_sort |
fixed point properties of c*-algebras |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77957126516&partnerID=40&md5=8531ac27bace0316969d9894a74ff952 http://cmuir.cmu.ac.th/handle/6653943832/6618 |
_version_ |
1681420647546224640 |