Probability density estimation using two new kernel functions

This paper considers two new kernel estimators of a density function f (x). The errors of the estimators are measured by the mean squared error (MSE(f̂(x,X)) and the mean integrated squared error (MISE(f̂)). The estimates of these error measures are also given. The estimators of MSE(f̂(x,X)) and MIS...

Full description

Saved in:
Bibliographic Details
Main Authors: Rodchuen M., Suwattee P.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-78649787292&partnerID=40&md5=208120ed0ae7e478377d69e2a05893df
http://cmuir.cmu.ac.th/handle/6653943832/6639
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-6639
record_format dspace
spelling th-cmuir.6653943832-66392014-08-30T03:51:02Z Probability density estimation using two new kernel functions Rodchuen M. Suwattee P. This paper considers two new kernel estimators of a density function f (x). The errors of the estimators are measured by the mean squared error (MSE(f̂(x,X)) and the mean integrated squared error (MISE(f̂)). The estimates of these error measures are also given. The estimators of MSE(f̂(x,X)) and MISE(f̂) are found to be asymptotically unbiased. Properties of the proposed estimators depend on the corresponding kernel functions used to derive them together with their bandwidths. The bandwidths used for comparison of the properties are the Silverman rule of thump (SRT), two-stage direct plug-in (DPI) and the solve-the-equation (STE) bandwidths. A simulation study is carried out to compare the AMISE of the estimates with those of uniform, Epanechnikov and Gaussian kernel functions. For data with outlier and bimodal distributions, the proposed estimates perform better than the uniform and Gaussian estimates. One of the proposed kernel estimates with STE bandwidth performs well when data are with a strongly skewed distribution. This estimates with SRT bandwidth performs well when data are skewed bimodal with small sample size. For data with claw distribution, the estimate with SRT bandwidth is better than the others. The same results hold when the STE bandwidth is used with large sample sizes. For data distributed as discrete comb, one of the proposed estimates with STE bandwidth performs better than the others. Another proposed kernel estimate also performs better than the uniform and Gaussian estimate. 2014-08-30T03:51:02Z 2014-08-30T03:51:02Z 2011 Article 1252526 http://www.scopus.com/inward/record.url?eid=2-s2.0-78649787292&partnerID=40&md5=208120ed0ae7e478377d69e2a05893df http://cmuir.cmu.ac.th/handle/6653943832/6639 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description This paper considers two new kernel estimators of a density function f (x). The errors of the estimators are measured by the mean squared error (MSE(f̂(x,X)) and the mean integrated squared error (MISE(f̂)). The estimates of these error measures are also given. The estimators of MSE(f̂(x,X)) and MISE(f̂) are found to be asymptotically unbiased. Properties of the proposed estimators depend on the corresponding kernel functions used to derive them together with their bandwidths. The bandwidths used for comparison of the properties are the Silverman rule of thump (SRT), two-stage direct plug-in (DPI) and the solve-the-equation (STE) bandwidths. A simulation study is carried out to compare the AMISE of the estimates with those of uniform, Epanechnikov and Gaussian kernel functions. For data with outlier and bimodal distributions, the proposed estimates perform better than the uniform and Gaussian estimates. One of the proposed kernel estimates with STE bandwidth performs well when data are with a strongly skewed distribution. This estimates with SRT bandwidth performs well when data are skewed bimodal with small sample size. For data with claw distribution, the estimate with SRT bandwidth is better than the others. The same results hold when the STE bandwidth is used with large sample sizes. For data distributed as discrete comb, one of the proposed estimates with STE bandwidth performs better than the others. Another proposed kernel estimate also performs better than the uniform and Gaussian estimate.
format Article
author Rodchuen M.
Suwattee P.
spellingShingle Rodchuen M.
Suwattee P.
Probability density estimation using two new kernel functions
author_facet Rodchuen M.
Suwattee P.
author_sort Rodchuen M.
title Probability density estimation using two new kernel functions
title_short Probability density estimation using two new kernel functions
title_full Probability density estimation using two new kernel functions
title_fullStr Probability density estimation using two new kernel functions
title_full_unstemmed Probability density estimation using two new kernel functions
title_sort probability density estimation using two new kernel functions
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-78649787292&partnerID=40&md5=208120ed0ae7e478377d69e2a05893df
http://cmuir.cmu.ac.th/handle/6653943832/6639
_version_ 1681420651457413120