A novel HIV-1 reporter virus with a membrane-bound Gaussia princeps luciferase

HIV-1 reporter viruses are a critical tool for investigating HIV-1 infection. By having a reporter gene incorporated into the HIV-1 genome, the expressed reporter protein acts as a specific tag, thus enabling specific detection of HIV-1 infected cells. Currently existing HIV-1 reporter viruses utili...

Full description

Saved in:
Bibliographic Details
Main Authors: Suree N., Koizumi N., Sahakyan A., Shimizu S., An D.S.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-84860574436&partnerID=40&md5=8db54d6ba7aa5eb2303e82e95d572898
http://cmuir.cmu.ac.th/handle/6653943832/6649
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
Description
Summary:HIV-1 reporter viruses are a critical tool for investigating HIV-1 infection. By having a reporter gene incorporated into the HIV-1 genome, the expressed reporter protein acts as a specific tag, thus enabling specific detection of HIV-1 infected cells. Currently existing HIV-1 reporter viruses utilize reporters for the detection of HIV-1 infected cells by a single assay. A reporter virus enabling the detection of viral particles as well as HIV-1 infected cells by two assays can be more versatile for many applications. In this report, a novel reporter HIV-1 was generated by introducing a membrane-anchored form of the Gaussia princeps luciferase gene (mGluc) upstream of the nef gene in the HIV-1 NL4-3 genome using a picornaviral 2A-like sequence. The resulting HIV-1 NL4-3mGluc virus expresses G. princeps luciferase efficiently on viral membrane and the cell surface of infected human T cell lines and primary peripheral blood mononuclear cells. This HIV-1 reporter is replication competent and the reporter gene mGluc is expressed during multiple rounds of infection. Importantly, viral particles can be detected by bioluminescence and infected cells can be detected simultaneously by bioluminescence and flow cytometric assays. With the versatility of two sensitive detection methods, this novel luciferase reporter has many applications such as cell-based screening for anti-HIV-1 agents or studies of HIV-1 pathogenicity. © 2012 Elsevier B.V..