Foliar pathogens of eucalypts

© 2019 Westerdijk Fungal Biodiversity Institute Species of eucalypts are commonly cultivated for solid wood and pulp products. The expansion of commercially managed eucalypt plantations has chiefly been driven by their rapid growth and suitability for propagation across a very wide variety of sites...

Full description

Saved in:
Bibliographic Details
Main Authors: P. W. Crous, M. J. Wingfield, R. Cheewangkoon, A. J. Carnegie, T. I. Burgess, B. A. Summerell, J. Edwards, P. W.J. Taylor, J. Z. Groenewald
Format: Journal
Published: 2019
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85071833375&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66550
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2019 Westerdijk Fungal Biodiversity Institute Species of eucalypts are commonly cultivated for solid wood and pulp products. The expansion of commercially managed eucalypt plantations has chiefly been driven by their rapid growth and suitability for propagation across a very wide variety of sites and climatic conditions. Infection of foliar fungal pathogens of eucalypts is resulting in increasingly negative impacts on commercial forest industries globally. To assist in evaluating this threat, the present study provides a global perspective on foliar pathogens of eucalypts. We treat 110 different genera including species associated with foliar disease symptoms of these hosts. The vast majority of these fungi have been grown in axenic culture, and subjected to DNA sequence analysis, resolving their phylogeny. During the course of this study several new genera and species were encountered, and these are described. New genera include: Lembosiniella (L. eucalyptorum on E. dunnii, Australia), Neosonderhenia (N. eucalypti on E. costata, Australia), Neothyriopsis (N. sphaerospora on E. camaldulensis, South Africa), Neotrichosphaeria (N. eucalypticola on E. deglupta, Australia), Nothotrimmatostroma (N. bifarium on E. dalrympleana, Australia), Nowamyces (incl. Nowamycetaceae fam. nov., N. globulus on E. globulus, Australia), and Walkaminomyces (W. medusae on E. alba, Australia). New species include (all from Australia): Disculoides fraxinoides on E. fraxinoides, Elsinoe piperitae on E. piperita, Fusculina regnans on E. regnans, Marthamyces johnstonii on E. dunnii, Neofusicoccum corticosae on E. corticosa, Neotrimmatostroma dalrympleanae on E. dalrympleana, Nowamyces piperitae on E. piperita, Phaeothyriolum dunnii on E. dunnii, Pseudophloeospora eucalyptigena on E. obliqua, Pseudophloeospora jollyi on Eucalyptus sp., Quambalaria tasmaniae on Eucalyptus sp., Q. rugosae on E. rugosa, Sonderhenia radiata on E. radiata, Teratosphaeria pseudonubilosa on E. globulus and Thyrinula dunnii on E. dunnii. A new name is also proposed for Heteroconium eucalypti as Thyrinula uruguayensis on E. dunnii, Uruguay. Although many of these genera and species are commonly associated with disease problems, several appear to be opportunists developing on stressed or dying tissues. For the majority of these fungi, pathogenicity remains to be determined. This represents an important goal for forest pathologists and biologists in the future. Consequently, this study will promote renewed interest in foliar pathogens of eucalypts, leading to investigations that will provide an improved understanding of the biology of these fungi.