A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions
We study strong convergence of the sequence generated by implicit and explicit general iterative methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits the duality mapping J , where is a gauge function on [ 0,∞). Our results improve and extend those announced by...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-84861047516&partnerID=40&md5=2b90093b9ef4f696ced5be8e62c9ba31 http://cmuir.cmu.ac.th/handle/6653943832/6657 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-6657 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-66572014-08-30T03:51:03Z A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions Nammanee K. Suantai S. Cholamjiak P. We study strong convergence of the sequence generated by implicit and explicit general iterative methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits the duality mapping J , where is a gauge function on [ 0,∞). Our results improve and extend those announced by G. Marino and H.-K. Xu (2006) and many authors. Copyright © 2012 Kamonrat Nammanee et al. 2014-08-30T03:51:03Z 2014-08-30T03:51:03Z 2012 Article 1110757X 10.1155/2012/506976 http://www.scopus.com/inward/record.url?eid=2-s2.0-84861047516&partnerID=40&md5=2b90093b9ef4f696ced5be8e62c9ba31 http://cmuir.cmu.ac.th/handle/6653943832/6657 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
We study strong convergence of the sequence generated by implicit and explicit general iterative methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits the duality mapping J , where is a gauge function on [ 0,∞). Our results improve and extend those announced by G. Marino and H.-K. Xu (2006) and many authors. Copyright © 2012 Kamonrat Nammanee et al. |
format |
Article |
author |
Nammanee K. Suantai S. Cholamjiak P. |
spellingShingle |
Nammanee K. Suantai S. Cholamjiak P. A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions |
author_facet |
Nammanee K. Suantai S. Cholamjiak P. |
author_sort |
Nammanee K. |
title |
A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions |
title_short |
A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions |
title_full |
A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions |
title_fullStr |
A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions |
title_full_unstemmed |
A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions |
title_sort |
general iterative method for a nonexpansive semigroup in banach spaces with gauge functions |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-84861047516&partnerID=40&md5=2b90093b9ef4f696ced5be8e62c9ba31 http://cmuir.cmu.ac.th/handle/6653943832/6657 |
_version_ |
1681420654785593344 |