A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions

We study strong convergence of the sequence generated by implicit and explicit general iterative methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits the duality mapping J , where is a gauge function on [ 0,∞). Our results improve and extend those announced by...

Full description

Saved in:
Bibliographic Details
Main Authors: Nammanee K., Suantai S., Cholamjiak P.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-84861047516&partnerID=40&md5=2b90093b9ef4f696ced5be8e62c9ba31
http://cmuir.cmu.ac.th/handle/6653943832/6657
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-6657
record_format dspace
spelling th-cmuir.6653943832-66572014-08-30T03:51:03Z A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions Nammanee K. Suantai S. Cholamjiak P. We study strong convergence of the sequence generated by implicit and explicit general iterative methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits the duality mapping J , where is a gauge function on [ 0,∞). Our results improve and extend those announced by G. Marino and H.-K. Xu (2006) and many authors. Copyright © 2012 Kamonrat Nammanee et al. 2014-08-30T03:51:03Z 2014-08-30T03:51:03Z 2012 Article 1110757X 10.1155/2012/506976 http://www.scopus.com/inward/record.url?eid=2-s2.0-84861047516&partnerID=40&md5=2b90093b9ef4f696ced5be8e62c9ba31 http://cmuir.cmu.ac.th/handle/6653943832/6657 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description We study strong convergence of the sequence generated by implicit and explicit general iterative methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits the duality mapping J , where is a gauge function on [ 0,∞). Our results improve and extend those announced by G. Marino and H.-K. Xu (2006) and many authors. Copyright © 2012 Kamonrat Nammanee et al.
format Article
author Nammanee K.
Suantai S.
Cholamjiak P.
spellingShingle Nammanee K.
Suantai S.
Cholamjiak P.
A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions
author_facet Nammanee K.
Suantai S.
Cholamjiak P.
author_sort Nammanee K.
title A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions
title_short A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions
title_full A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions
title_fullStr A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions
title_full_unstemmed A general iterative method for a nonexpansive semigroup in banach spaces with gauge functions
title_sort general iterative method for a nonexpansive semigroup in banach spaces with gauge functions
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-84861047516&partnerID=40&md5=2b90093b9ef4f696ced5be8e62c9ba31
http://cmuir.cmu.ac.th/handle/6653943832/6657
_version_ 1681420654785593344