Synergistic toxicity of plant essential oils combined with pyrethroid insecticides against blow flies and the house fly

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. Blow flies (Diptera: Calliphoridae) and the house fly (Diptera: Muscidae) are filth flies of medical importance, and control of their population is needed. As insecticide applications have resulted in fly resistance, and the exploration of pl...

Full description

Saved in:
Bibliographic Details
Main Authors: Suttida Suwannayod, Kabkaew L. Sukontason, Benjawan Pitasawat, Anuluck Junkum, Kwankamol Limsopatham, Malcolm K. Jones, Pradya Somboon, Ratana Leksomboon, Theeraphap Chareonviriyaphap, Apiwat Tawatsin, Usavadee Thavara, Kom Sukontason
Format: Journal
Published: 2019
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070199653&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66571
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2019 by the authors. Licensee MDPI, Basel, Switzerland. Blow flies (Diptera: Calliphoridae) and the house fly (Diptera: Muscidae) are filth flies of medical importance, and control of their population is needed. As insecticide applications have resulted in fly resistance, and the exploration of plant essential oils (EOs) has increased against filth flies, this study assessed the combination of EOs with pyrethoids to enhance toxic efficacy. The EOs of five effective plants were screened initially against the house fly (Musca domestica L.). Their chemical constituent was performed using gas chromatography-mass spectrometry (GC-MS) analysis. The main components of Boesenbergia rotunda (Zingiberaceae) rhizome, Curcuma longa (Zingiberaceae) rhizome, Citrus hystrix (Rutaceae) fruit peel, Ocimum gratissimum (Lamiaceae) seed, and Zanthoxylum limonella (Rutaceae) fruit were δ-3-caren (35.25%), β-turmerone (51.68%), β-pinene (26.56%), p-cumic aldehyde (58.21%), and dipentene (60.22%), respectively. The screening test revealed that the three most effective plant EOs were from B. rotunda, C. longa and O. gratissimum, which were selected for the combination with two pyrethroid insecticides (permethrin and deltamethrin), in order to enhance their synergistic efficacy against the blow flies, Chrysomya megacephala Fabricius, Chrysomya rufifacies Macquart, and Lucilia cuprina Wiedemann, and the house fly. Synergistic action was presented in almost all of the flies tested with permenthrin/deltamethrin/EOs mixtures. It was interesting that the combination of deltamethrin with three EOs showed a synergistic effect on all of the tested flies. However, an antagonistic effect was observed in C. megacephala and M. domestica treated with permethrin-B. rotunda and C. megacephala treated with permethrin-O. gratissimum. The LD50 of insecticides decreased when combined with plant EOs. This alternative strategy will be helpful in developing a formula for effective fly control management.