A class of linear codes of length 2 over finite chain rings

© 2020 World Scientific Publishing Company. Let pm be a finite field of cardinality pm, where p is an odd prime, k,λ be positive integers satisfying λ ≥ 2, and denote = pm[x]/(f(x)λpk), where f(x) is an irreducible polynomial in pm[x]. In this note, for any fixed invertible element ω ×, we present a...

Full description

Saved in:
Bibliographic Details
Main Authors: Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang Wei Fu, Jian Gao, Songsak Sriboonchitta
Format: Journal
Published: 2019
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070193939&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66706
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-66706
record_format dspace
spelling th-cmuir.6653943832-667062019-09-16T12:55:54Z A class of linear codes of length 2 over finite chain rings Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Jian Gao Songsak Sriboonchitta Mathematics © 2020 World Scientific Publishing Company. Let pm be a finite field of cardinality pm, where p is an odd prime, k,λ be positive integers satisfying λ ≥ 2, and denote = pm[x]/(f(x)λpk), where f(x) is an irreducible polynomial in pm[x]. In this note, for any fixed invertible element ω ×, we present all distinct linear codes S over of length 2 satisfying the condition: (ωf(x)pka1,a0) S for all (a0,a1) S. This conclusion can be used to determine the structure of (δ + αu2)-constacyclic codes over the finite chain ring pm[u]/(u2λ) of length npk for any positive integer n satisfying gcd(p,n) = 1. 2019-09-16T12:55:54Z 2019-09-16T12:55:54Z 2019-01-01 Journal 02194988 2-s2.0-85070193939 10.1142/S0219498820501030 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070193939&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/66706
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Yonglin Cao
Yuan Cao
Hai Q. Dinh
Fang Wei Fu
Jian Gao
Songsak Sriboonchitta
A class of linear codes of length 2 over finite chain rings
description © 2020 World Scientific Publishing Company. Let pm be a finite field of cardinality pm, where p is an odd prime, k,λ be positive integers satisfying λ ≥ 2, and denote = pm[x]/(f(x)λpk), where f(x) is an irreducible polynomial in pm[x]. In this note, for any fixed invertible element ω ×, we present all distinct linear codes S over of length 2 satisfying the condition: (ωf(x)pka1,a0) S for all (a0,a1) S. This conclusion can be used to determine the structure of (δ + αu2)-constacyclic codes over the finite chain ring pm[u]/(u2λ) of length npk for any positive integer n satisfying gcd(p,n) = 1.
format Journal
author Yonglin Cao
Yuan Cao
Hai Q. Dinh
Fang Wei Fu
Jian Gao
Songsak Sriboonchitta
author_facet Yonglin Cao
Yuan Cao
Hai Q. Dinh
Fang Wei Fu
Jian Gao
Songsak Sriboonchitta
author_sort Yonglin Cao
title A class of linear codes of length 2 over finite chain rings
title_short A class of linear codes of length 2 over finite chain rings
title_full A class of linear codes of length 2 over finite chain rings
title_fullStr A class of linear codes of length 2 over finite chain rings
title_full_unstemmed A class of linear codes of length 2 over finite chain rings
title_sort class of linear codes of length 2 over finite chain rings
publishDate 2019
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070193939&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66706
_version_ 1681426505179070464