A class of linear codes of length 2 over finite chain rings
© 2020 World Scientific Publishing Company. Let pm be a finite field of cardinality pm, where p is an odd prime, k,λ be positive integers satisfying λ ≥ 2, and denote = pm[x]/(f(x)λpk), where f(x) is an irreducible polynomial in pm[x]. In this note, for any fixed invertible element ω ×, we present a...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2019
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070193939&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/66706 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-66706 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-667062019-09-16T12:55:54Z A class of linear codes of length 2 over finite chain rings Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Jian Gao Songsak Sriboonchitta Mathematics © 2020 World Scientific Publishing Company. Let pm be a finite field of cardinality pm, where p is an odd prime, k,λ be positive integers satisfying λ ≥ 2, and denote = pm[x]/(f(x)λpk), where f(x) is an irreducible polynomial in pm[x]. In this note, for any fixed invertible element ω ×, we present all distinct linear codes S over of length 2 satisfying the condition: (ωf(x)pka1,a0) S for all (a0,a1) S. This conclusion can be used to determine the structure of (δ + αu2)-constacyclic codes over the finite chain ring pm[u]/(u2λ) of length npk for any positive integer n satisfying gcd(p,n) = 1. 2019-09-16T12:55:54Z 2019-09-16T12:55:54Z 2019-01-01 Journal 02194988 2-s2.0-85070193939 10.1142/S0219498820501030 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070193939&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/66706 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Mathematics |
spellingShingle |
Mathematics Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Jian Gao Songsak Sriboonchitta A class of linear codes of length 2 over finite chain rings |
description |
© 2020 World Scientific Publishing Company. Let pm be a finite field of cardinality pm, where p is an odd prime, k,λ be positive integers satisfying λ ≥ 2, and denote = pm[x]/(f(x)λpk), where f(x) is an irreducible polynomial in pm[x]. In this note, for any fixed invertible element ω ×, we present all distinct linear codes S over of length 2 satisfying the condition: (ωf(x)pka1,a0) S for all (a0,a1) S. This conclusion can be used to determine the structure of (δ + αu2)-constacyclic codes over the finite chain ring pm[u]/(u2λ) of length npk for any positive integer n satisfying gcd(p,n) = 1. |
format |
Journal |
author |
Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Jian Gao Songsak Sriboonchitta |
author_facet |
Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Jian Gao Songsak Sriboonchitta |
author_sort |
Yonglin Cao |
title |
A class of linear codes of length 2 over finite chain rings |
title_short |
A class of linear codes of length 2 over finite chain rings |
title_full |
A class of linear codes of length 2 over finite chain rings |
title_fullStr |
A class of linear codes of length 2 over finite chain rings |
title_full_unstemmed |
A class of linear codes of length 2 over finite chain rings |
title_sort |
class of linear codes of length 2 over finite chain rings |
publishDate |
2019 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070193939&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/66706 |
_version_ |
1681426505179070464 |