Different Constant Voltages of Anodization on the Corrosion Behavior of Ti-6Al-4V Alloy
The objective of this study was to investigate the corrosion behavior of titanium alloy after anodization. Ti-6Al-4V alloy specimens were anodized in a 0.5 M phosphoric acid solution for 30 minutes using constant voltages of 100, 150, 200 and 300 volt. After anodization, the surface morphology, surf...
Saved in:
Main Authors: | , , |
---|---|
Language: | English |
Published: |
Science Faculty of Chiang Mai University
2019
|
Subjects: | |
Online Access: | http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=5518 http://cmuir.cmu.ac.th/jspui/handle/6653943832/66761 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-66761 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-667612019-09-17T08:55:03Z Different Constant Voltages of Anodization on the Corrosion Behavior of Ti-6Al-4V Alloy Warittha Asumpinwong " Kanokwan Saengkiettiyut Viritpon Srimaneepong anodization corrosion voltage titanium Ti-6Al-4V The objective of this study was to investigate the corrosion behavior of titanium alloy after anodization. Ti-6Al-4V alloy specimens were anodized in a 0.5 M phosphoric acid solution for 30 minutes using constant voltages of 100, 150, 200 and 300 volt. After anodization, the surface morphology, surface roughness, and crystal structure were observed under scanning electron microscopy (SEM), scanning probe microscopy (SPM), and x-ray diffraction (XRD), respectively. To determine the corrosion behavior of as-received or anodized Ti-6Al-4V alloy, all specimens were investigated using a potentiodynamic polarization technique in a 0.9% saline solution at 37oC. The results indicated that the Ecorr of the as-received material was statistically lower than that of the anodized groups. The Ecorr of anodized Ti-6Al-4V alloy increased as the voltage of anodization increased. There was no significant difference in corrosion rates between the as-received material and Ti-6Al-4V alloy specimens anodized using 100 or 150 V. Titanium alloy anodized using 300 V had the highest mean corrosion rate. It can be concluded that anodization can improve the corrosion potential of Ti-6Al-4V alloy, but increased voltage in the anodization of Ti-6Al-4V alloy led to an increased corrosion rate implying that higher voltage does not provide good corrosion resistance with Ti-6Al-4V alloy. The appropriate applied anodization voltage is necessary to generate the optimum titanium surface. 2019-09-17T08:55:03Z 2019-09-17T08:55:03Z 2015 Chiang Mai Journal of Science 42, 1 (Jan 2015), 238 - 247 0125-2526 http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=5518 http://cmuir.cmu.ac.th/jspui/handle/6653943832/66761 Eng Science Faculty of Chiang Mai University |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
topic |
anodization corrosion voltage titanium Ti-6Al-4V |
spellingShingle |
anodization corrosion voltage titanium Ti-6Al-4V Warittha Asumpinwong " Kanokwan Saengkiettiyut Viritpon Srimaneepong Different Constant Voltages of Anodization on the Corrosion Behavior of Ti-6Al-4V Alloy |
description |
The objective of this study was to investigate the corrosion behavior of titanium alloy after anodization. Ti-6Al-4V alloy specimens were anodized in a 0.5 M phosphoric acid solution for 30 minutes using constant voltages of 100, 150, 200 and 300 volt. After anodization, the surface morphology, surface roughness, and crystal structure were observed under scanning electron microscopy (SEM), scanning probe microscopy (SPM), and x-ray diffraction (XRD), respectively. To determine the corrosion behavior of as-received or anodized Ti-6Al-4V alloy, all specimens were investigated using a potentiodynamic polarization technique in a 0.9% saline solution at 37oC. The results indicated that the Ecorr of the as-received material was statistically lower than that of the anodized groups. The Ecorr of anodized Ti-6Al-4V alloy increased as the voltage of anodization increased. There was no significant difference in corrosion rates between the as-received material and Ti-6Al-4V alloy specimens anodized using 100 or 150 V. Titanium alloy anodized using 300 V had the highest mean corrosion rate. It can be concluded that anodization can improve the corrosion potential of Ti-6Al-4V alloy, but increased voltage in the anodization of Ti-6Al-4V alloy led to an increased corrosion rate implying that higher voltage does not provide good corrosion resistance with Ti-6Al-4V alloy. The appropriate applied anodization voltage is necessary to generate the optimum titanium surface. |
author |
Warittha Asumpinwong " Kanokwan Saengkiettiyut Viritpon Srimaneepong |
author_facet |
Warittha Asumpinwong " Kanokwan Saengkiettiyut Viritpon Srimaneepong |
author_sort |
Warittha Asumpinwong " |
title |
Different Constant Voltages of Anodization on the Corrosion Behavior of Ti-6Al-4V Alloy |
title_short |
Different Constant Voltages of Anodization on the Corrosion Behavior of Ti-6Al-4V Alloy |
title_full |
Different Constant Voltages of Anodization on the Corrosion Behavior of Ti-6Al-4V Alloy |
title_fullStr |
Different Constant Voltages of Anodization on the Corrosion Behavior of Ti-6Al-4V Alloy |
title_full_unstemmed |
Different Constant Voltages of Anodization on the Corrosion Behavior of Ti-6Al-4V Alloy |
title_sort |
different constant voltages of anodization on the corrosion behavior of ti-6al-4v alloy |
publisher |
Science Faculty of Chiang Mai University |
publishDate |
2019 |
url |
http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=5518 http://cmuir.cmu.ac.th/jspui/handle/6653943832/66761 |
_version_ |
1681426515299926016 |