Effect of BaZr 0.05Ti 0.95O 3 addition on microstructure and piezoelectric properties of hydroxyapatite bone

The aim of this study was to investigate the effect of BaZr 0.05Ti 0.95O 3 (BZT) addition on the microstructure, physical, dielectric and piezoelectric properties of hydroxyapatite (HA), and develop new biomaterials which have potential applications in the support for cellular growth and in the syst...

全面介紹

Saved in:
書目詳細資料
Main Authors: Pisitpipathsin N., Kantha P., Leenakul W., Sriprapha P., Pengpat K., Eitssayeam S., Rujijanagul G.
格式: Conference or Workshop Item
語言:English
出版: 2014
在線閱讀:http://www.scopus.com/inward/record.url?eid=2-s2.0-84860805421&partnerID=40&md5=df4471fb93c05a7984e3f8c337519d27
http://cmuir.cmu.ac.th/handle/6653943832/6682
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
語言: English
實物特徵
總結:The aim of this study was to investigate the effect of BaZr 0.05Ti 0.95O 3 (BZT) addition on the microstructure, physical, dielectric and piezoelectric properties of hydroxyapatite (HA), and develop new biomaterials which have potential applications in the support for cellular growth and in the system for bone regeneration. In this case the BaZr 0.05Ti 0.95O 3-HA composites (HABZT) were prepared by conventional sintering method. The BZT were added to HA with ratio 0, 10, 20 and 30 %wt. Then the mixed powders were pressed and subsequently sintered at the temperature ranging from 1150 to 1350°C. The result showed that the dielectric and piezoelectric properties were improved by the addition of BZT. Moreover, the bioactivity of the HA improved with addition of BZT especially at 10% as evident by the formation of bone like apatite layers on the surface of all BCZT composites after soaking in simulated body fluid (SBF) for 15 days. The results confirmed the possibility of using these bioactive composites for treatment within the human body. © (2012) Trans Tech Publications.