Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems

We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong converg...

Full description

Saved in:
Bibliographic Details
Main Authors: Nammanee K., Suantai S., Cholamjiak P.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-84864917715&partnerID=40&md5=919b588df2606af4dea8a12531c83659
http://cmuir.cmu.ac.th/handle/6653943832/6730
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-6730
record_format dspace
spelling th-cmuir.6653943832-67302014-08-30T03:51:10Z Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems Nammanee K. Suantai S. Cholamjiak P. We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a system of convex minimization problems. Copyright © 2012 Kamonrat Nammanee et al. 2014-08-30T03:51:10Z 2014-08-30T03:51:10Z 2012 Article 1110757X 10.1155/2012/804538 http://www.scopus.com/inward/record.url?eid=2-s2.0-84864917715&partnerID=40&md5=919b588df2606af4dea8a12531c83659 http://cmuir.cmu.ac.th/handle/6653943832/6730 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a system of convex minimization problems. Copyright © 2012 Kamonrat Nammanee et al.
format Article
author Nammanee K.
Suantai S.
Cholamjiak P.
spellingShingle Nammanee K.
Suantai S.
Cholamjiak P.
Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems
author_facet Nammanee K.
Suantai S.
Cholamjiak P.
author_sort Nammanee K.
title Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems
title_short Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems
title_full Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems
title_fullStr Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems
title_full_unstemmed Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems
title_sort convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-84864917715&partnerID=40&md5=919b588df2606af4dea8a12531c83659
http://cmuir.cmu.ac.th/handle/6653943832/6730
_version_ 1681420668465315840