Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems
We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong converg...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-84864917715&partnerID=40&md5=919b588df2606af4dea8a12531c83659 http://cmuir.cmu.ac.th/handle/6653943832/6730 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-6730 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-67302014-08-30T03:51:10Z Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems Nammanee K. Suantai S. Cholamjiak P. We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a system of convex minimization problems. Copyright © 2012 Kamonrat Nammanee et al. 2014-08-30T03:51:10Z 2014-08-30T03:51:10Z 2012 Article 1110757X 10.1155/2012/804538 http://www.scopus.com/inward/record.url?eid=2-s2.0-84864917715&partnerID=40&md5=919b588df2606af4dea8a12531c83659 http://cmuir.cmu.ac.th/handle/6653943832/6730 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a system of convex minimization problems. Copyright © 2012 Kamonrat Nammanee et al. |
format |
Article |
author |
Nammanee K. Suantai S. Cholamjiak P. |
spellingShingle |
Nammanee K. Suantai S. Cholamjiak P. Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems |
author_facet |
Nammanee K. Suantai S. Cholamjiak P. |
author_sort |
Nammanee K. |
title |
Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems |
title_short |
Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems |
title_full |
Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems |
title_fullStr |
Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems |
title_full_unstemmed |
Convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems |
title_sort |
convergence theorems for maximal monotone operators, weak relatively nonexpansive mappings and equilibrium problems |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-84864917715&partnerID=40&md5=919b588df2606af4dea8a12531c83659 http://cmuir.cmu.ac.th/handle/6653943832/6730 |
_version_ |
1681420668465315840 |