Development and evaluation of a screening test kit for detection of tetracycline group residues in honey

Extensive use of antibiotics in bee colonies can cause an accumulation of residues in honey and become a public health hazard. Analysis of antibiotic residues, therefore, is essential for consumer protection purposes. This study developed and evaluated a simple, rapid, and inexpensive screening test...

Full description

Saved in:
Bibliographic Details
Main Authors: Saksangawong C., Intipunya P., Pinthong R., Kanongnooch C.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-84881084774&partnerID=40&md5=463371bcfa4ad544657af2c0f517ce0c
http://cmuir.cmu.ac.th/handle/6653943832/675
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-675
record_format dspace
spelling th-cmuir.6653943832-6752014-08-29T08:50:34Z Development and evaluation of a screening test kit for detection of tetracycline group residues in honey Saksangawong C. Intipunya P. Pinthong R. Kanongnooch C. Extensive use of antibiotics in bee colonies can cause an accumulation of residues in honey and become a public health hazard. Analysis of antibiotic residues, therefore, is essential for consumer protection purposes. This study developed and evaluated a simple, rapid, and inexpensive screening test kit for detecting tetracycline group residues in honey. A microbial inhibition assay was carried out using spores of Geobacillus stearothermophilus (DMST 8041) in optimal medium with bromocresol purple as an indicator. Prepared 0.1 ml of 30% honey solution was incubated at 65 ± 1°C for 2-3 hours in a water bath. A positive reaction was detected by negligible change of the purple medium, indicating the presence of a substance(s) that can prevent the growth of the test organism. A negative reaction, indicating an absence of antibiotic residue in sufficient quantity to inhibit bacterial growth, showed a complete change of the medium's color, due to bacterial propagation, from purple to yellow. Using negative and positive controls (honey free of any residues and honey spiked with varying concentrations of residue, respectively), the screening test kit was 99% accurate. The test kit had a detection limit for tetracycline group residues in honey of 10 μg/kg. The shelf life of the test kit kept refrigerated at 4-8°C was 9 months. The test kit was then used to test 120 commercially available honey samples from across northern Thailand for tetracycline group residues. All 120 samples tested free of antibiotic residues using the new test kit. Of these samples, 30 were randomly selected and subjected to antibiotic residue test using HPLC technique to validate the results from the new screening test kit. Only one of the samples tested positive (8.85 μg/kg of chlortetracycline) at a concentration below the 10 μg/kg detection limit of the test kit. 2014-08-29T08:50:34Z 2014-08-29T08:50:34Z 2013 Article 16851994 10.12982/CMUJNS.2013.0002 http://www.scopus.com/inward/record.url?eid=2-s2.0-84881084774&partnerID=40&md5=463371bcfa4ad544657af2c0f517ce0c http://cmuir.cmu.ac.th/handle/6653943832/675 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description Extensive use of antibiotics in bee colonies can cause an accumulation of residues in honey and become a public health hazard. Analysis of antibiotic residues, therefore, is essential for consumer protection purposes. This study developed and evaluated a simple, rapid, and inexpensive screening test kit for detecting tetracycline group residues in honey. A microbial inhibition assay was carried out using spores of Geobacillus stearothermophilus (DMST 8041) in optimal medium with bromocresol purple as an indicator. Prepared 0.1 ml of 30% honey solution was incubated at 65 ± 1°C for 2-3 hours in a water bath. A positive reaction was detected by negligible change of the purple medium, indicating the presence of a substance(s) that can prevent the growth of the test organism. A negative reaction, indicating an absence of antibiotic residue in sufficient quantity to inhibit bacterial growth, showed a complete change of the medium's color, due to bacterial propagation, from purple to yellow. Using negative and positive controls (honey free of any residues and honey spiked with varying concentrations of residue, respectively), the screening test kit was 99% accurate. The test kit had a detection limit for tetracycline group residues in honey of 10 μg/kg. The shelf life of the test kit kept refrigerated at 4-8°C was 9 months. The test kit was then used to test 120 commercially available honey samples from across northern Thailand for tetracycline group residues. All 120 samples tested free of antibiotic residues using the new test kit. Of these samples, 30 were randomly selected and subjected to antibiotic residue test using HPLC technique to validate the results from the new screening test kit. Only one of the samples tested positive (8.85 μg/kg of chlortetracycline) at a concentration below the 10 μg/kg detection limit of the test kit.
format Article
author Saksangawong C.
Intipunya P.
Pinthong R.
Kanongnooch C.
spellingShingle Saksangawong C.
Intipunya P.
Pinthong R.
Kanongnooch C.
Development and evaluation of a screening test kit for detection of tetracycline group residues in honey
author_facet Saksangawong C.
Intipunya P.
Pinthong R.
Kanongnooch C.
author_sort Saksangawong C.
title Development and evaluation of a screening test kit for detection of tetracycline group residues in honey
title_short Development and evaluation of a screening test kit for detection of tetracycline group residues in honey
title_full Development and evaluation of a screening test kit for detection of tetracycline group residues in honey
title_fullStr Development and evaluation of a screening test kit for detection of tetracycline group residues in honey
title_full_unstemmed Development and evaluation of a screening test kit for detection of tetracycline group residues in honey
title_sort development and evaluation of a screening test kit for detection of tetracycline group residues in honey
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-84881084774&partnerID=40&md5=463371bcfa4ad544657af2c0f517ce0c
http://cmuir.cmu.ac.th/handle/6653943832/675
_version_ 1681419527638745088