The staggered heterojunction of CeO<inf>2</inf>/CdS nanocomposite for enhanced photocatalytic activity

© 2019 Elsevier Masson SAS To modify the photocatalytic activity of CeO2, CdS nanoparticles was composited with CeO2 through a homogeneous precipitation method. The crystal structure, composition, morphology, and optical properties of CdS/CeO2 composite were analyzed in detail. The results found tha...

全面介紹

Saved in:
書目詳細資料
Main Authors: Duangdao Channei, Kantapat Chansaenpak, Panatda Jannoey, Sukon Phanichphant
格式: 雜誌
出版: 2020
主題:
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073707640&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67682
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
實物特徵
總結:© 2019 Elsevier Masson SAS To modify the photocatalytic activity of CeO2, CdS nanoparticles was composited with CeO2 through a homogeneous precipitation method. The crystal structure, composition, morphology, and optical properties of CdS/CeO2 composite were analyzed in detail. The results found that CdS/CeO2 composite consisted of the cubic fluorite structure of CeO2 and wurtzite hexagonal structure of CdS. Meanwhile, TEM magnification of CdS/CeO2 composite exhibited clear lattice fringe corresponding to [hkl] plane of CeO2 and CdS. UV–visible absorption spectra showed that CdS extended the adsorption edge of the CdS/CeO2 composite to longer visible region, which related to the decrease of band gap. The coexistence of staggered type II band alignment in the CdS/CeO2 composite facilitated the charge separation of visible–excited electrons and holes, thereby decreasing the recombination and improving the efficient photocatalytic activity for methylene blue dye degradation, with the apparent rate constant (0.0102 min−1) which is about 7 times higher than that of pure CeO2 (k = 0.0014 min−1).