Limits on the Electromagnetic Counterpart of Binary Black Hole Coalescence at Visible Wavelengths

© 2019. The American Astronomical Society. All rights reserved.. We used the Télescope Action Rapide pour les Objets Transitoires network of telescopes to search for the electromagnetic counterparts of GW150914, GW170104, and GW170814, which were reported to originate from binary black hole merger e...

Full description

Saved in:
Bibliographic Details
Main Authors: Kanthanakorn Noysena, Alain Klotz, Michel Boër, Romain Laugier, Siramas Komonjinda, Damien Turpin
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077398727&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67777
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-67777
record_format dspace
spelling th-cmuir.6653943832-677772020-04-02T15:18:20Z Limits on the Electromagnetic Counterpart of Binary Black Hole Coalescence at Visible Wavelengths Kanthanakorn Noysena Alain Klotz Michel Boër Romain Laugier Siramas Komonjinda Damien Turpin Earth and Planetary Sciences Physics and Astronomy © 2019. The American Astronomical Society. All rights reserved.. We used the Télescope Action Rapide pour les Objets Transitoires network of telescopes to search for the electromagnetic counterparts of GW150914, GW170104, and GW170814, which were reported to originate from binary black hole merger events by the Laser Interferometer Gravitational-wave Observatory and Virgo collaborations. Our goal is to constrain the emission from a binary black hole coalescence at visible wavelengths. We developed a simple and effective algorithm to detect new sources by matching the image data with the Gaia catalog Data Release 1. Machine learning was used and an algorithm was designed to locate unknown sources in a large field of view image. The angular distance between objects in the image and in the catalog was used to find new sources; we then process the candidates to validate them as possible new unknown celestial objects. Though several possible candidates were detected in the three gravitational-wave source error boxes studied, none of them were confirmed as a viable counterpart. The algorithm was effective for the identification of unknown candidates in a very large field and provided candidates for GW150914, GW170104, and GW170814. The entire 90% GW170814 error box was surveyed extensively within 0.6 days after the gravitational-wave emission resulting in an absolute limiting R magnitude of -23.8. This strong limit excludes to a great extent a possible emission of a gamma-ray burst with an optical counterpart associated with GW170814. 2020-04-02T15:03:41Z 2020-04-02T15:03:41Z 2019-11-20 Journal 15384357 0004637X 2-s2.0-85077398727 10.3847/1538-4357/ab4c39 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077398727&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67777
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Earth and Planetary Sciences
Physics and Astronomy
spellingShingle Earth and Planetary Sciences
Physics and Astronomy
Kanthanakorn Noysena
Alain Klotz
Michel Boër
Romain Laugier
Siramas Komonjinda
Damien Turpin
Limits on the Electromagnetic Counterpart of Binary Black Hole Coalescence at Visible Wavelengths
description © 2019. The American Astronomical Society. All rights reserved.. We used the Télescope Action Rapide pour les Objets Transitoires network of telescopes to search for the electromagnetic counterparts of GW150914, GW170104, and GW170814, which were reported to originate from binary black hole merger events by the Laser Interferometer Gravitational-wave Observatory and Virgo collaborations. Our goal is to constrain the emission from a binary black hole coalescence at visible wavelengths. We developed a simple and effective algorithm to detect new sources by matching the image data with the Gaia catalog Data Release 1. Machine learning was used and an algorithm was designed to locate unknown sources in a large field of view image. The angular distance between objects in the image and in the catalog was used to find new sources; we then process the candidates to validate them as possible new unknown celestial objects. Though several possible candidates were detected in the three gravitational-wave source error boxes studied, none of them were confirmed as a viable counterpart. The algorithm was effective for the identification of unknown candidates in a very large field and provided candidates for GW150914, GW170104, and GW170814. The entire 90% GW170814 error box was surveyed extensively within 0.6 days after the gravitational-wave emission resulting in an absolute limiting R magnitude of -23.8. This strong limit excludes to a great extent a possible emission of a gamma-ray burst with an optical counterpart associated with GW170814.
format Journal
author Kanthanakorn Noysena
Alain Klotz
Michel Boër
Romain Laugier
Siramas Komonjinda
Damien Turpin
author_facet Kanthanakorn Noysena
Alain Klotz
Michel Boër
Romain Laugier
Siramas Komonjinda
Damien Turpin
author_sort Kanthanakorn Noysena
title Limits on the Electromagnetic Counterpart of Binary Black Hole Coalescence at Visible Wavelengths
title_short Limits on the Electromagnetic Counterpart of Binary Black Hole Coalescence at Visible Wavelengths
title_full Limits on the Electromagnetic Counterpart of Binary Black Hole Coalescence at Visible Wavelengths
title_fullStr Limits on the Electromagnetic Counterpart of Binary Black Hole Coalescence at Visible Wavelengths
title_full_unstemmed Limits on the Electromagnetic Counterpart of Binary Black Hole Coalescence at Visible Wavelengths
title_sort limits on the electromagnetic counterpart of binary black hole coalescence at visible wavelengths
publishDate 2020
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077398727&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67777
_version_ 1681426697831841792