Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption

Copyright © 2019 American Chemical Society. In this paper, the potential use of either amine-functionalized or hydroxyl-functionalized magnesium ferrite (MgFe2O4) nanoparticles (NPs) as Congo red nanoadsorbents is explored and compared. The amine-functionalized MgFe2O4 NPs (denoted as MgFe2O4-NH2 NP...

Full description

Saved in:
Bibliographic Details
Main Authors: Chattharika Aoopngan, Jeeranan Nonkumwong, Santi Phumying, Wilasinee Promjantuek, Santi Maensiri, Parinya Noisa, Supree Pinitsoontorn, Supon Ananta, Laongnuan Srisombat
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078554647&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67885
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-67885
record_format dspace
spelling th-cmuir.6653943832-678852020-04-02T15:09:14Z Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption Chattharika Aoopngan Jeeranan Nonkumwong Santi Phumying Wilasinee Promjantuek Santi Maensiri Parinya Noisa Supree Pinitsoontorn Supon Ananta Laongnuan Srisombat Materials Science Copyright © 2019 American Chemical Society. In this paper, the potential use of either amine-functionalized or hydroxyl-functionalized magnesium ferrite (MgFe2O4) nanoparticles (NPs) as Congo red nanoadsorbents is explored and compared. The amine-functionalized MgFe2O4 NPs (denoted as MgFe2O4-NH2 NPs) were synthesized by a one-pot coprecipitation method using ethanolamine as a surface modifier, while the hydroxyl-functionalized MgFe2O4 NPs (denoted as MgFe2O4-OH NPs) were prepared by a hydrothermal method. In general, both nanoadsorbents can be successfully produced without calcination and were found to possess superparamagnetic properties with high saturation magnetization (Ms). In particular, MgFe2O4-OH NPs exhibit a higher Ms value of ∼53 emu g-1, promoting the rapid separation ability of the NPs from the treated solution using an external permanent magnet. The Congo red removal performance of these nanoadsorbents was investigated as a function of the pH of the aqueous solution and contact time. The removal efficiency of Congo red by MgFe2O4-NH2 NPs was found to be ∼96% within 180 min at pH 6, while MgFe2O4-OH NPs provided a removal efficiency at ∼88% within 420 min at pH 8. In addition, the maximum adsorption capacities (qm) calculated using the Langmuir isotherm equation were found to be 71.4 and 67.6 mg g-1 for MgFe2O4-NH2 and MgFe2O4-OH NPs, respectively. The higher qm value of MgFe2O4-NH2 NPs could be attributed to stronger electrostatic interactions with the sulfonate groups of Congo red formed by larger numbers of protonated amine groups than protonated hydroxyl groups of the adsorbents under the performed conditions. Moreover, reusability experiments also revealed that MgFe2O4-NH2 NPs offered a higher removal efficiency than MgFe2O4-OH NPs for the same cycles tested. Therefore, this study demonstrates that MgFe2O4-NH2 NPs synthesized by a simple one-pot synthetic method are applicable as reusable magnetic nanoadsorbents for Congo red removal in current practice. 2020-04-02T15:09:14Z 2020-04-02T15:09:14Z 2019-08-23 Journal 25740970 2-s2.0-85078554647 10.1021/acsanm.9b01305 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078554647&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67885
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Materials Science
spellingShingle Materials Science
Chattharika Aoopngan
Jeeranan Nonkumwong
Santi Phumying
Wilasinee Promjantuek
Santi Maensiri
Parinya Noisa
Supree Pinitsoontorn
Supon Ananta
Laongnuan Srisombat
Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption
description Copyright © 2019 American Chemical Society. In this paper, the potential use of either amine-functionalized or hydroxyl-functionalized magnesium ferrite (MgFe2O4) nanoparticles (NPs) as Congo red nanoadsorbents is explored and compared. The amine-functionalized MgFe2O4 NPs (denoted as MgFe2O4-NH2 NPs) were synthesized by a one-pot coprecipitation method using ethanolamine as a surface modifier, while the hydroxyl-functionalized MgFe2O4 NPs (denoted as MgFe2O4-OH NPs) were prepared by a hydrothermal method. In general, both nanoadsorbents can be successfully produced without calcination and were found to possess superparamagnetic properties with high saturation magnetization (Ms). In particular, MgFe2O4-OH NPs exhibit a higher Ms value of ∼53 emu g-1, promoting the rapid separation ability of the NPs from the treated solution using an external permanent magnet. The Congo red removal performance of these nanoadsorbents was investigated as a function of the pH of the aqueous solution and contact time. The removal efficiency of Congo red by MgFe2O4-NH2 NPs was found to be ∼96% within 180 min at pH 6, while MgFe2O4-OH NPs provided a removal efficiency at ∼88% within 420 min at pH 8. In addition, the maximum adsorption capacities (qm) calculated using the Langmuir isotherm equation were found to be 71.4 and 67.6 mg g-1 for MgFe2O4-NH2 and MgFe2O4-OH NPs, respectively. The higher qm value of MgFe2O4-NH2 NPs could be attributed to stronger electrostatic interactions with the sulfonate groups of Congo red formed by larger numbers of protonated amine groups than protonated hydroxyl groups of the adsorbents under the performed conditions. Moreover, reusability experiments also revealed that MgFe2O4-NH2 NPs offered a higher removal efficiency than MgFe2O4-OH NPs for the same cycles tested. Therefore, this study demonstrates that MgFe2O4-NH2 NPs synthesized by a simple one-pot synthetic method are applicable as reusable magnetic nanoadsorbents for Congo red removal in current practice.
format Journal
author Chattharika Aoopngan
Jeeranan Nonkumwong
Santi Phumying
Wilasinee Promjantuek
Santi Maensiri
Parinya Noisa
Supree Pinitsoontorn
Supon Ananta
Laongnuan Srisombat
author_facet Chattharika Aoopngan
Jeeranan Nonkumwong
Santi Phumying
Wilasinee Promjantuek
Santi Maensiri
Parinya Noisa
Supree Pinitsoontorn
Supon Ananta
Laongnuan Srisombat
author_sort Chattharika Aoopngan
title Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption
title_short Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption
title_full Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption
title_fullStr Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption
title_full_unstemmed Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption
title_sort amine-functionalized and hydroxyl-functionalized magnesium ferrite nanoparticles for congo red adsorption
publishDate 2020
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078554647&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67885
_version_ 1681426717859643392