Naturally ordered strong endomorphisms on graphs

© 2019, Springer Japan KK, part of Springer Nature. In this paper, we study the natural partial order ≤ on SEnd(G), the strong endomorphism monoid of a finite graph G and characterize minimal elements and maximal elements of (SEnd(G) , ≤). Then we introduce the concept of connectedness on (SEnd(G) ,...

Full description

Saved in:
Bibliographic Details
Main Authors: Nirutt Pipattanajinda, Yangkok Kim, Srichan Arworn
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074269110&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67899
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-67899
record_format dspace
spelling th-cmuir.6653943832-678992020-04-02T15:10:31Z Naturally ordered strong endomorphisms on graphs Nirutt Pipattanajinda Yangkok Kim Srichan Arworn Mathematics © 2019, Springer Japan KK, part of Springer Nature. In this paper, we study the natural partial order ≤ on SEnd(G), the strong endomorphism monoid of a finite graph G and characterize minimal elements and maximal elements of (SEnd(G) , ≤). Then we introduce the concept of connectedness on (SEnd(G) , ≤) by using the natural partial order ≤ and determine the number of connected components of SEnd(G) under certain conditions. 2020-04-02T15:10:31Z 2020-04-02T15:10:31Z 2019-11-01 Journal 14355914 09110119 2-s2.0-85074269110 10.1007/s00373-019-02109-z https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074269110&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67899
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Nirutt Pipattanajinda
Yangkok Kim
Srichan Arworn
Naturally ordered strong endomorphisms on graphs
description © 2019, Springer Japan KK, part of Springer Nature. In this paper, we study the natural partial order ≤ on SEnd(G), the strong endomorphism monoid of a finite graph G and characterize minimal elements and maximal elements of (SEnd(G) , ≤). Then we introduce the concept of connectedness on (SEnd(G) , ≤) by using the natural partial order ≤ and determine the number of connected components of SEnd(G) under certain conditions.
format Journal
author Nirutt Pipattanajinda
Yangkok Kim
Srichan Arworn
author_facet Nirutt Pipattanajinda
Yangkok Kim
Srichan Arworn
author_sort Nirutt Pipattanajinda
title Naturally ordered strong endomorphisms on graphs
title_short Naturally ordered strong endomorphisms on graphs
title_full Naturally ordered strong endomorphisms on graphs
title_fullStr Naturally ordered strong endomorphisms on graphs
title_full_unstemmed Naturally ordered strong endomorphisms on graphs
title_sort naturally ordered strong endomorphisms on graphs
publishDate 2020
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074269110&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67899
_version_ 1681426720421314560