Weak and strong convergence theorems for zero points of inverse strongly monotone mapping and fixed points of quasi-nonexpansive mappings in Hilbert space

© 2019 by the Mathematical Association of Thailand. All rights reserved. In this paper, we propose a new algorithm for zero points of inverse strongly monotone mapping and fixed points of a finite of quasi-nonexpansive mappings in Hilbert space and prove weak and strong convergence theorems for the...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Buris Tongnoi, Suthep Suantaiz
التنسيق: دورية
منشور في: 2020
الموضوعات:
الوصول للمادة أونلاين:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073288086&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67906
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:© 2019 by the Mathematical Association of Thailand. All rights reserved. In this paper, we propose a new algorithm for zero points of inverse strongly monotone mapping and fixed points of a finite of quasi-nonexpansive mappings in Hilbert space and prove weak and strong convergence theorems for the proposed methods under some conditions. Moreover, we also show that the sequence generated by our algorithm converges to a solution of some variational inequality problem.