Parametrization of generalized Heisenberg groups
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Let M be a left module over a ring R with identity and let β be a skew-symmetric R-bilinear form on M. The generalized Heisenberg group consists of the set M× M× R= { (x, y, t) : x, y∈ M, t∈ R} with group law (x1,y1,t1)(x2,y2,t2)=(x1+x2,...
Saved in:
Main Authors: | , |
---|---|
Format: | Journal |
Published: |
2020
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075338498&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67914 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-67914 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-679142020-04-02T15:11:15Z Parametrization of generalized Heisenberg groups Teerapong Suksumran Sayan Panma Mathematics © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Let M be a left module over a ring R with identity and let β be a skew-symmetric R-bilinear form on M. The generalized Heisenberg group consists of the set M× M× R= { (x, y, t) : x, y∈ M, t∈ R} with group law (x1,y1,t1)(x2,y2,t2)=(x1+x2,y1+y2,t1+β(x1,y2)+t2).Under the assumption of 2 being a unit in R, we prove that the generalized Heisenberg group decomposes into a product of its subset and subgroup, similar to the well-known polar decomposition in linear algebra. This leads to a parametrization of the generalized Heisenberg group that resembles a parametrization of the Lorentz transformation group by relative velocities and space rotations. 2020-04-02T15:11:15Z 2020-04-02T15:11:15Z 2019-01-01 Journal 09381279 2-s2.0-85075338498 10.1007/s00200-019-00405-y https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075338498&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67914 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Mathematics |
spellingShingle |
Mathematics Teerapong Suksumran Sayan Panma Parametrization of generalized Heisenberg groups |
description |
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Let M be a left module over a ring R with identity and let β be a skew-symmetric R-bilinear form on M. The generalized Heisenberg group consists of the set M× M× R= { (x, y, t) : x, y∈ M, t∈ R} with group law (x1,y1,t1)(x2,y2,t2)=(x1+x2,y1+y2,t1+β(x1,y2)+t2).Under the assumption of 2 being a unit in R, we prove that the generalized Heisenberg group decomposes into a product of its subset and subgroup, similar to the well-known polar decomposition in linear algebra. This leads to a parametrization of the generalized Heisenberg group that resembles a parametrization of the Lorentz transformation group by relative velocities and space rotations. |
format |
Journal |
author |
Teerapong Suksumran Sayan Panma |
author_facet |
Teerapong Suksumran Sayan Panma |
author_sort |
Teerapong Suksumran |
title |
Parametrization of generalized Heisenberg groups |
title_short |
Parametrization of generalized Heisenberg groups |
title_full |
Parametrization of generalized Heisenberg groups |
title_fullStr |
Parametrization of generalized Heisenberg groups |
title_full_unstemmed |
Parametrization of generalized Heisenberg groups |
title_sort |
parametrization of generalized heisenberg groups |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075338498&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67914 |
_version_ |
1681426723249324032 |