Parametrization of generalized Heisenberg groups

© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Let M be a left module over a ring R with identity and let β be a skew-symmetric R-bilinear form on M. The generalized Heisenberg group consists of the set M× M× R= { (x, y, t) : x, y∈ M, t∈ R} with group law (x1,y1,t1)(x2,y2,t2)=(x1+x2,...

Full description

Saved in:
Bibliographic Details
Main Authors: Teerapong Suksumran, Sayan Panma
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075338498&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67914
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-67914
record_format dspace
spelling th-cmuir.6653943832-679142020-04-02T15:11:15Z Parametrization of generalized Heisenberg groups Teerapong Suksumran Sayan Panma Mathematics © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Let M be a left module over a ring R with identity and let β be a skew-symmetric R-bilinear form on M. The generalized Heisenberg group consists of the set M× M× R= { (x, y, t) : x, y∈ M, t∈ R} with group law (x1,y1,t1)(x2,y2,t2)=(x1+x2,y1+y2,t1+β(x1,y2)+t2).Under the assumption of 2 being a unit in R, we prove that the generalized Heisenberg group decomposes into a product of its subset and subgroup, similar to the well-known polar decomposition in linear algebra. This leads to a parametrization of the generalized Heisenberg group that resembles a parametrization of the Lorentz transformation group by relative velocities and space rotations. 2020-04-02T15:11:15Z 2020-04-02T15:11:15Z 2019-01-01 Journal 09381279 2-s2.0-85075338498 10.1007/s00200-019-00405-y https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075338498&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67914
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Teerapong Suksumran
Sayan Panma
Parametrization of generalized Heisenberg groups
description © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Let M be a left module over a ring R with identity and let β be a skew-symmetric R-bilinear form on M. The generalized Heisenberg group consists of the set M× M× R= { (x, y, t) : x, y∈ M, t∈ R} with group law (x1,y1,t1)(x2,y2,t2)=(x1+x2,y1+y2,t1+β(x1,y2)+t2).Under the assumption of 2 being a unit in R, we prove that the generalized Heisenberg group decomposes into a product of its subset and subgroup, similar to the well-known polar decomposition in linear algebra. This leads to a parametrization of the generalized Heisenberg group that resembles a parametrization of the Lorentz transformation group by relative velocities and space rotations.
format Journal
author Teerapong Suksumran
Sayan Panma
author_facet Teerapong Suksumran
Sayan Panma
author_sort Teerapong Suksumran
title Parametrization of generalized Heisenberg groups
title_short Parametrization of generalized Heisenberg groups
title_full Parametrization of generalized Heisenberg groups
title_fullStr Parametrization of generalized Heisenberg groups
title_full_unstemmed Parametrization of generalized Heisenberg groups
title_sort parametrization of generalized heisenberg groups
publishDate 2020
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075338498&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67914
_version_ 1681426723249324032