A metric invariant of mobius transformations
© TUBITAK. The complex unit disk D = z ∈ C: |z| < 1 is endowed with Mobius addition ⊕M defined by We prove that the metric dT defined on D by dT (w, z) = tan -1 |-w ⊕M z| is an invariant of Mobius transformations carrying D onto itself. We also prove that (D, dT) and (D, dp), where dp denotes the...
Saved in:
Main Authors: | , |
---|---|
Format: | Journal |
Published: |
2020
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077531230&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67917 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-67917 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-679172020-04-02T15:11:27Z A metric invariant of mobius transformations Teerapong Suksumran Oğuzhan Demirel Mathematics © TUBITAK. The complex unit disk D = z ∈ C: |z| < 1 is endowed with Mobius addition ⊕M defined by We prove that the metric dT defined on D by dT (w, z) = tan -1 |-w ⊕M z| is an invariant of Mobius transformations carrying D onto itself. We also prove that (D, dT) and (D, dp), where dp denotes the Poincare metric, have the same isometry group and then classify the isometries of (D, dT). 2020-04-02T15:11:27Z 2020-04-02T15:11:27Z 2019-01-01 Journal 13036149 13000098 2-s2.0-85077531230 10.3906/mat-1902-13 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077531230&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67917 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Mathematics |
spellingShingle |
Mathematics Teerapong Suksumran Oğuzhan Demirel A metric invariant of mobius transformations |
description |
© TUBITAK. The complex unit disk D = z ∈ C: |z| < 1 is endowed with Mobius addition ⊕M defined by We prove that the metric dT defined on D by dT (w, z) = tan -1 |-w ⊕M z| is an invariant of Mobius transformations carrying D onto itself. We also prove that (D, dT) and (D, dp), where dp denotes the Poincare metric, have the same isometry group and then classify the isometries of (D, dT). |
format |
Journal |
author |
Teerapong Suksumran Oğuzhan Demirel |
author_facet |
Teerapong Suksumran Oğuzhan Demirel |
author_sort |
Teerapong Suksumran |
title |
A metric invariant of mobius transformations |
title_short |
A metric invariant of mobius transformations |
title_full |
A metric invariant of mobius transformations |
title_fullStr |
A metric invariant of mobius transformations |
title_full_unstemmed |
A metric invariant of mobius transformations |
title_sort |
metric invariant of mobius transformations |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077531230&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67917 |
_version_ |
1681426723858546688 |