A metric invariant of mobius transformations

© TUBITAK. The complex unit disk D = z ∈ C: |z| < 1 is endowed with Mobius addition ⊕M defined by We prove that the metric dT defined on D by dT (w, z) = tan -1 |-w ⊕M z| is an invariant of Mobius transformations carrying D onto itself. We also prove that (D, dT) and (D, dp), where dp denotes the...

Full description

Saved in:
Bibliographic Details
Main Authors: Teerapong Suksumran, Oğuzhan Demirel
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077531230&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67917
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-67917
record_format dspace
spelling th-cmuir.6653943832-679172020-04-02T15:11:27Z A metric invariant of mobius transformations Teerapong Suksumran Oğuzhan Demirel Mathematics © TUBITAK. The complex unit disk D = z ∈ C: |z| < 1 is endowed with Mobius addition ⊕M defined by We prove that the metric dT defined on D by dT (w, z) = tan -1 |-w ⊕M z| is an invariant of Mobius transformations carrying D onto itself. We also prove that (D, dT) and (D, dp), where dp denotes the Poincare metric, have the same isometry group and then classify the isometries of (D, dT). 2020-04-02T15:11:27Z 2020-04-02T15:11:27Z 2019-01-01 Journal 13036149 13000098 2-s2.0-85077531230 10.3906/mat-1902-13 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077531230&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67917
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Teerapong Suksumran
Oğuzhan Demirel
A metric invariant of mobius transformations
description © TUBITAK. The complex unit disk D = z ∈ C: |z| < 1 is endowed with Mobius addition ⊕M defined by We prove that the metric dT defined on D by dT (w, z) = tan -1 |-w ⊕M z| is an invariant of Mobius transformations carrying D onto itself. We also prove that (D, dT) and (D, dp), where dp denotes the Poincare metric, have the same isometry group and then classify the isometries of (D, dT).
format Journal
author Teerapong Suksumran
Oğuzhan Demirel
author_facet Teerapong Suksumran
Oğuzhan Demirel
author_sort Teerapong Suksumran
title A metric invariant of mobius transformations
title_short A metric invariant of mobius transformations
title_full A metric invariant of mobius transformations
title_fullStr A metric invariant of mobius transformations
title_full_unstemmed A metric invariant of mobius transformations
title_sort metric invariant of mobius transformations
publishDate 2020
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077531230&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67917
_version_ 1681426723858546688