Green's relations on HypG(2)
A generalized hypersubstitution of type τ = (2) is a mapping which maps the binary operation symbol f to a term σ(f) which does not necessarily preserve the arity. Any such τ can be inductively extended to a map σ on the set of all terms of type τ = (2), and any two such extensions can be composed i...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-84861939567&partnerID=40&md5=27f77ee8e416882f7ba6a25a3441d96d http://cmuir.cmu.ac.th/handle/6653943832/6793 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
Summary: | A generalized hypersubstitution of type τ = (2) is a mapping which maps the binary operation symbol f to a term σ(f) which does not necessarily preserve the arity. Any such τ can be inductively extended to a map σ on the set of all terms of type τ = (2), and any two such extensions can be composed in a natural way. Thus, the set HypG(2) of all generalized hypersubstitutions of type τ = (2) forms a monoid. Green's relations on the monoid of all hypersubstitutions of type τ = (2) were studied by K. Denecke and Sh.L. Wismath. In this paper we describe the classes of generalized hypersubstitutions of type τ = (2) under Green's relations. |
---|