Connectedness of endo-cayley digraphs of right(left) zero union of semigroups

Let S be a finite semigroup, A a subset of S and f an endomor- phism on S. The endo-Cayley digraph of S corresponding to a connecting set A and an endomorphism f, denoted by endo - Cay f (S,A) is a digraph whose vertex set is S and a vertex u is adjacent to vertex v if and only if v = f(u)a for some...

Full description

Saved in:
Bibliographic Details
Main Authors: Promsakon C., Panma S.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-84861392491&partnerID=40&md5=872ef09ec7dc2273ff28bfaf4edc9acb
http://cmuir.cmu.ac.th/handle/6653943832/6802
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
Description
Summary:Let S be a finite semigroup, A a subset of S and f an endomor- phism on S. The endo-Cayley digraph of S corresponding to a connecting set A and an endomorphism f, denoted by endo - Cay f (S,A) is a digraph whose vertex set is S and a vertex u is adjacent to vertex v if and only if v = f(u)a for some a ∈ A. In this paper, we study about the connected properties of endo-Cayley di-graphs of cartesian product between semigroups and right(left) zero semigroups. We show the type of connected that they can be. Moreover, we also generalize endo-Cayley digraphs of that product into tensor product resulting graphs. © 2012 Academic Publications, Ltd.