Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane

© 2020 The Authors An “indirect” photo-electrochemical sensor is presented for the measurement of a mixture of analytes including reducing sugars (e.g. glucose, fructose) and non-reducing sugars (e.g. sucrose, trehalose). Its innovation relies on the use of a palladium film creating a two-compartmen...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuanzhu Zhao, Joshua Dobson, Catajina Harabajiu, Elena Madrid, Tinakorn Kanyanee, Catherine Lyall, Shaun Reeksting, Mariolino Carta, Neil B. McKeown, Laura Torrente-Murciano, Kate Black, Frank Marken
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081163840&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68222
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-68222
record_format dspace
spelling th-cmuir.6653943832-682222020-04-02T15:24:33Z Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane Yuanzhu Zhao Joshua Dobson Catajina Harabajiu Elena Madrid Tinakorn Kanyanee Catherine Lyall Shaun Reeksting Mariolino Carta Neil B. McKeown Laura Torrente-Murciano Kate Black Frank Marken Biochemistry, Genetics and Molecular Biology Chemistry © 2020 The Authors An “indirect” photo-electrochemical sensor is presented for the measurement of a mixture of analytes including reducing sugars (e.g. glucose, fructose) and non-reducing sugars (e.g. sucrose, trehalose). Its innovation relies on the use of a palladium film creating a two-compartment cell to separate the electrochemical and the photocatalytic processes. In this original way, the electrochemical detection is separated from the potential complex matrix of the analyte (i.e. colloids, salts, additives, etc.). Hydrogen is generated in the photocatalytic compartment by a Pt@g-C3N4 photocatalyst embedded into a hydrogen capture material composed of a polymer of intrinsic microporosity (PIM-1). The immobilised photocatalyst is deposited onto a thin palladium membrane, which allows rapid pure hydrogen diffusion, which is then monitored by chronopotentiometry (zero current) response in the electrochemical compartment. The concept is demonstrated herein for the analysis of sugar content in commercial soft drinks. There is no requirement for the analyte to be conducting with electrolyte or buffered. In this way, samples (biological or not) can be simply monitored by their exposition to blue LED light, opening the door to additional energy conversion and waste-to-energy applications. 2020-04-02T15:23:31Z 2020-04-02T15:23:31Z 2020-08-01 Journal 1878562X 15675394 2-s2.0-85081163840 10.1016/j.bioelechem.2020.107499 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081163840&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68222
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Biochemistry, Genetics and Molecular Biology
Chemistry
spellingShingle Biochemistry, Genetics and Molecular Biology
Chemistry
Yuanzhu Zhao
Joshua Dobson
Catajina Harabajiu
Elena Madrid
Tinakorn Kanyanee
Catherine Lyall
Shaun Reeksting
Mariolino Carta
Neil B. McKeown
Laura Torrente-Murciano
Kate Black
Frank Marken
Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane
description © 2020 The Authors An “indirect” photo-electrochemical sensor is presented for the measurement of a mixture of analytes including reducing sugars (e.g. glucose, fructose) and non-reducing sugars (e.g. sucrose, trehalose). Its innovation relies on the use of a palladium film creating a two-compartment cell to separate the electrochemical and the photocatalytic processes. In this original way, the electrochemical detection is separated from the potential complex matrix of the analyte (i.e. colloids, salts, additives, etc.). Hydrogen is generated in the photocatalytic compartment by a Pt@g-C3N4 photocatalyst embedded into a hydrogen capture material composed of a polymer of intrinsic microporosity (PIM-1). The immobilised photocatalyst is deposited onto a thin palladium membrane, which allows rapid pure hydrogen diffusion, which is then monitored by chronopotentiometry (zero current) response in the electrochemical compartment. The concept is demonstrated herein for the analysis of sugar content in commercial soft drinks. There is no requirement for the analyte to be conducting with electrolyte or buffered. In this way, samples (biological or not) can be simply monitored by their exposition to blue LED light, opening the door to additional energy conversion and waste-to-energy applications.
format Journal
author Yuanzhu Zhao
Joshua Dobson
Catajina Harabajiu
Elena Madrid
Tinakorn Kanyanee
Catherine Lyall
Shaun Reeksting
Mariolino Carta
Neil B. McKeown
Laura Torrente-Murciano
Kate Black
Frank Marken
author_facet Yuanzhu Zhao
Joshua Dobson
Catajina Harabajiu
Elena Madrid
Tinakorn Kanyanee
Catherine Lyall
Shaun Reeksting
Mariolino Carta
Neil B. McKeown
Laura Torrente-Murciano
Kate Black
Frank Marken
author_sort Yuanzhu Zhao
title Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane
title_short Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane
title_full Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane
title_fullStr Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane
title_full_unstemmed Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane
title_sort indirect photo-electrochemical detection of carbohydrates with pt@g-c<inf>3</inf>n<inf>4</inf> immobilised into a polymer of intrinsic microporosity (pim-1) and attached to a palladium hydrogen capture membrane
publishDate 2020
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081163840&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68222
_version_ 1681426780401958912