Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane
© 2020 The Authors An “indirect” photo-electrochemical sensor is presented for the measurement of a mixture of analytes including reducing sugars (e.g. glucose, fructose) and non-reducing sugars (e.g. sucrose, trehalose). Its innovation relies on the use of a palladium film creating a two-compartmen...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Journal |
Published: |
2020
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081163840&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68222 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-68222 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-682222020-04-02T15:24:33Z Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane Yuanzhu Zhao Joshua Dobson Catajina Harabajiu Elena Madrid Tinakorn Kanyanee Catherine Lyall Shaun Reeksting Mariolino Carta Neil B. McKeown Laura Torrente-Murciano Kate Black Frank Marken Biochemistry, Genetics and Molecular Biology Chemistry © 2020 The Authors An “indirect” photo-electrochemical sensor is presented for the measurement of a mixture of analytes including reducing sugars (e.g. glucose, fructose) and non-reducing sugars (e.g. sucrose, trehalose). Its innovation relies on the use of a palladium film creating a two-compartment cell to separate the electrochemical and the photocatalytic processes. In this original way, the electrochemical detection is separated from the potential complex matrix of the analyte (i.e. colloids, salts, additives, etc.). Hydrogen is generated in the photocatalytic compartment by a Pt@g-C3N4 photocatalyst embedded into a hydrogen capture material composed of a polymer of intrinsic microporosity (PIM-1). The immobilised photocatalyst is deposited onto a thin palladium membrane, which allows rapid pure hydrogen diffusion, which is then monitored by chronopotentiometry (zero current) response in the electrochemical compartment. The concept is demonstrated herein for the analysis of sugar content in commercial soft drinks. There is no requirement for the analyte to be conducting with electrolyte or buffered. In this way, samples (biological or not) can be simply monitored by their exposition to blue LED light, opening the door to additional energy conversion and waste-to-energy applications. 2020-04-02T15:23:31Z 2020-04-02T15:23:31Z 2020-08-01 Journal 1878562X 15675394 2-s2.0-85081163840 10.1016/j.bioelechem.2020.107499 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081163840&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68222 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Biochemistry, Genetics and Molecular Biology Chemistry |
spellingShingle |
Biochemistry, Genetics and Molecular Biology Chemistry Yuanzhu Zhao Joshua Dobson Catajina Harabajiu Elena Madrid Tinakorn Kanyanee Catherine Lyall Shaun Reeksting Mariolino Carta Neil B. McKeown Laura Torrente-Murciano Kate Black Frank Marken Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane |
description |
© 2020 The Authors An “indirect” photo-electrochemical sensor is presented for the measurement of a mixture of analytes including reducing sugars (e.g. glucose, fructose) and non-reducing sugars (e.g. sucrose, trehalose). Its innovation relies on the use of a palladium film creating a two-compartment cell to separate the electrochemical and the photocatalytic processes. In this original way, the electrochemical detection is separated from the potential complex matrix of the analyte (i.e. colloids, salts, additives, etc.). Hydrogen is generated in the photocatalytic compartment by a Pt@g-C3N4 photocatalyst embedded into a hydrogen capture material composed of a polymer of intrinsic microporosity (PIM-1). The immobilised photocatalyst is deposited onto a thin palladium membrane, which allows rapid pure hydrogen diffusion, which is then monitored by chronopotentiometry (zero current) response in the electrochemical compartment. The concept is demonstrated herein for the analysis of sugar content in commercial soft drinks. There is no requirement for the analyte to be conducting with electrolyte or buffered. In this way, samples (biological or not) can be simply monitored by their exposition to blue LED light, opening the door to additional energy conversion and waste-to-energy applications. |
format |
Journal |
author |
Yuanzhu Zhao Joshua Dobson Catajina Harabajiu Elena Madrid Tinakorn Kanyanee Catherine Lyall Shaun Reeksting Mariolino Carta Neil B. McKeown Laura Torrente-Murciano Kate Black Frank Marken |
author_facet |
Yuanzhu Zhao Joshua Dobson Catajina Harabajiu Elena Madrid Tinakorn Kanyanee Catherine Lyall Shaun Reeksting Mariolino Carta Neil B. McKeown Laura Torrente-Murciano Kate Black Frank Marken |
author_sort |
Yuanzhu Zhao |
title |
Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane |
title_short |
Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane |
title_full |
Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane |
title_fullStr |
Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane |
title_full_unstemmed |
Indirect photo-electrochemical detection of carbohydrates with Pt@g-C<inf>3</inf>N<inf>4</inf> immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane |
title_sort |
indirect photo-electrochemical detection of carbohydrates with pt@g-c<inf>3</inf>n<inf>4</inf> immobilised into a polymer of intrinsic microporosity (pim-1) and attached to a palladium hydrogen capture membrane |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081163840&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68222 |
_version_ |
1681426780401958912 |