Bactericidal effect of clove oil against multidrug-resistant streptococcus suis isolated from human patients and slaughtered pigs

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. Streptococcus suis is a zoonotic pathogen that is currently considered an emerging multidrug-resistant (MDR). Increasing antibiotic resistance can lead to the unsuccessful treatment of S. suis infection. Recently, many investigations of medic...

Full description

Saved in:
Bibliographic Details
Main Authors: Kanruethai Wongsawan, Wasana Chaisri, Sahatchai Tangtrongsup, Raktham Mektrirat
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077189886&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68254
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2019 by the authors. Licensee MDPI, Basel, Switzerland. Streptococcus suis is a zoonotic pathogen that is currently considered an emerging multidrug-resistant (MDR). Increasing antibiotic resistance can lead to the unsuccessful treatment of S. suis infection. Recently, many investigations of medicinal plants were conducted for the treatment of infection as a result of the increase of antibiotic-resistant bacteria. The aims of this study were to determine the chemical composition of essential oil from Syzygium aromaticum (L.) Merr. & L.M. Perry and the antibacterial activities of clove oil on MDR S. suis. Using gas chromatography coupled to a mass spectrometer, eugenol (97.76%) was found to be the major active ingredient of clove oil. In vitro antibacterial activities of clove oil against MDR S. suis were evaluated. Using the agar disc diffusion test, the clove oil showed a maximum zone of inhibition at 15% (v/v) oil concentration. In a broth microdilution method, the minimum bactericidal concentration of clove oil against all MDR S. suis isolates was 0.1% (v/v). A time-kill analysis was performed, and the killing kinetics of clove oil showed that MDR S. suis was completely reduced after 15 min of exposure to clove oil. In addition, clove oil exhibited a strong antibacterial activity at all pH values applied following incubation of MDR S. suis in pH-adjusted media with clove oil. Moreover, scanning electron microscopy revealed the nonviable S. suis isolates clearly showed atypical form and cell membrane lysis after incubation with clove oil. This study confirms the efficacy of clove oil as a natural antimicrobial against MDR S. suis and suggests the possibility of employing it as a promising alternative product for control of infectious diseases caused by S. suis in animal and human patients.