導出完成 — 

Probabilistic and More General Uncertainty-Based (e.g., Fuzzy) Approaches to Crisp Clustering Explain the Empirical Success of the K-Sets Algorithm

© 2020, Springer Nature Switzerland AG. Recently, a new empirically successful algorithm was proposed for crisp clustering: the K-sets algorithm. In this paper, we show that a natural uncertainty-based formalization of what is clustering automatically leads to the mathematical ideas and definitions...

全面介紹

Saved in:
書目詳細資料
Main Authors: Vladik Kreinovich, Olga Kosheleva, Shahnaz N. Shahbazova, Songsak Sriboonchitta
格式: Book Series
出版: 2020
主題:
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081610724&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68347
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University