On matrix-product structure of repeated-root constacyclic codes over finite fields
© 2019 Elsevier B.V. For any prime number p, positive integers m,k,n, where n satisfies gcd(p,n)=1, and for any non-zero element λ0 of the finite field Fpm of cardinality pm, we prove that any λ0pk-constacyclic code of length pkn over the finite field Fpm is monomially equivalent to a matrix-product...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Journal |
Published: |
2020
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85076694051&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68453 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-68453 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-684532020-04-02T15:27:38Z On matrix-product structure of repeated-root constacyclic codes over finite fields Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Paravee Maneejuk Mathematics © 2019 Elsevier B.V. For any prime number p, positive integers m,k,n, where n satisfies gcd(p,n)=1, and for any non-zero element λ0 of the finite field Fpm of cardinality pm, we prove that any λ0pk-constacyclic code of length pkn over the finite field Fpm is monomially equivalent to a matrix-product code of a nested sequence of pkλ0-constacyclic codes with length n over Fpm. As an application, we completely determine the Hamming distances of all negacyclic codes of length 7⋅2l over F7 for any integer l≥3. 2020-04-02T15:27:38Z 2020-04-02T15:27:38Z 2020-04-01 Journal 0012365X 2-s2.0-85076694051 10.1016/j.disc.2019.111768 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85076694051&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68453 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Mathematics |
spellingShingle |
Mathematics Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Paravee Maneejuk On matrix-product structure of repeated-root constacyclic codes over finite fields |
description |
© 2019 Elsevier B.V. For any prime number p, positive integers m,k,n, where n satisfies gcd(p,n)=1, and for any non-zero element λ0 of the finite field Fpm of cardinality pm, we prove that any λ0pk-constacyclic code of length pkn over the finite field Fpm is monomially equivalent to a matrix-product code of a nested sequence of pkλ0-constacyclic codes with length n over Fpm. As an application, we completely determine the Hamming distances of all negacyclic codes of length 7⋅2l over F7 for any integer l≥3. |
format |
Journal |
author |
Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Paravee Maneejuk |
author_facet |
Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Paravee Maneejuk |
author_sort |
Yonglin Cao |
title |
On matrix-product structure of repeated-root constacyclic codes over finite fields |
title_short |
On matrix-product structure of repeated-root constacyclic codes over finite fields |
title_full |
On matrix-product structure of repeated-root constacyclic codes over finite fields |
title_fullStr |
On matrix-product structure of repeated-root constacyclic codes over finite fields |
title_full_unstemmed |
On matrix-product structure of repeated-root constacyclic codes over finite fields |
title_sort |
on matrix-product structure of repeated-root constacyclic codes over finite fields |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85076694051&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68453 |
_version_ |
1681426822738214912 |