On matrix-product structure of repeated-root constacyclic codes over finite fields

© 2019 Elsevier B.V. For any prime number p, positive integers m,k,n, where n satisfies gcd(p,n)=1, and for any non-zero element λ0 of the finite field Fpm of cardinality pm, we prove that any λ0pk-constacyclic code of length pkn over the finite field Fpm is monomially equivalent to a matrix-product...

Full description

Saved in:
Bibliographic Details
Main Authors: Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang Wei Fu, Paravee Maneejuk
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85076694051&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68453
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-68453
record_format dspace
spelling th-cmuir.6653943832-684532020-04-02T15:27:38Z On matrix-product structure of repeated-root constacyclic codes over finite fields Yonglin Cao Yuan Cao Hai Q. Dinh Fang Wei Fu Paravee Maneejuk Mathematics © 2019 Elsevier B.V. For any prime number p, positive integers m,k,n, where n satisfies gcd(p,n)=1, and for any non-zero element λ0 of the finite field Fpm of cardinality pm, we prove that any λ0pk-constacyclic code of length pkn over the finite field Fpm is monomially equivalent to a matrix-product code of a nested sequence of pkλ0-constacyclic codes with length n over Fpm. As an application, we completely determine the Hamming distances of all negacyclic codes of length 7⋅2l over F7 for any integer l≥3. 2020-04-02T15:27:38Z 2020-04-02T15:27:38Z 2020-04-01 Journal 0012365X 2-s2.0-85076694051 10.1016/j.disc.2019.111768 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85076694051&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68453
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Yonglin Cao
Yuan Cao
Hai Q. Dinh
Fang Wei Fu
Paravee Maneejuk
On matrix-product structure of repeated-root constacyclic codes over finite fields
description © 2019 Elsevier B.V. For any prime number p, positive integers m,k,n, where n satisfies gcd(p,n)=1, and for any non-zero element λ0 of the finite field Fpm of cardinality pm, we prove that any λ0pk-constacyclic code of length pkn over the finite field Fpm is monomially equivalent to a matrix-product code of a nested sequence of pkλ0-constacyclic codes with length n over Fpm. As an application, we completely determine the Hamming distances of all negacyclic codes of length 7⋅2l over F7 for any integer l≥3.
format Journal
author Yonglin Cao
Yuan Cao
Hai Q. Dinh
Fang Wei Fu
Paravee Maneejuk
author_facet Yonglin Cao
Yuan Cao
Hai Q. Dinh
Fang Wei Fu
Paravee Maneejuk
author_sort Yonglin Cao
title On matrix-product structure of repeated-root constacyclic codes over finite fields
title_short On matrix-product structure of repeated-root constacyclic codes over finite fields
title_full On matrix-product structure of repeated-root constacyclic codes over finite fields
title_fullStr On matrix-product structure of repeated-root constacyclic codes over finite fields
title_full_unstemmed On matrix-product structure of repeated-root constacyclic codes over finite fields
title_sort on matrix-product structure of repeated-root constacyclic codes over finite fields
publishDate 2020
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85076694051&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68453
_version_ 1681426822738214912