Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉

© 2019 Elsevier B.V. In this paper, we study quantum error-correcting codes from skew constacyclic codes over the ring [Formula presented], where q=pm for any odd prime p and positive integer m. We decompose skew constacyclic codes over the ring R as a direct sum of skew constacyclic codes over Fq....

Full description

Saved in:
Bibliographic Details
Main Authors: Tushar Bag, Hai Q. Dinh, Ashish K. Upadhyay, Ramakrishna Bandi, Woraphon Yamaka
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075757909&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68455
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-68455
record_format dspace
spelling th-cmuir.6653943832-684552020-04-02T15:27:39Z Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉 Tushar Bag Hai Q. Dinh Ashish K. Upadhyay Ramakrishna Bandi Woraphon Yamaka Mathematics © 2019 Elsevier B.V. In this paper, we study quantum error-correcting codes from skew constacyclic codes over the ring [Formula presented], where q=pm for any odd prime p and positive integer m. We decompose skew constacyclic codes over the ring R as a direct sum of skew constacyclic codes over Fq. Self-dual skew constacyclic codes over the ring R are characterized. Necessary and sufficient conditions for skew negacyclic and skew constacyclic codes to be dual-containing are obtained. As an application, we construct new quantum error-correcting codes from skew constacyclic codes over Fq. 2020-04-02T15:27:39Z 2020-04-02T15:27:39Z 2020-03-01 Journal 0012365X 2-s2.0-85075757909 10.1016/j.disc.2019.111737 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075757909&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68455
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Tushar Bag
Hai Q. Dinh
Ashish K. Upadhyay
Ramakrishna Bandi
Woraphon Yamaka
Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉
description © 2019 Elsevier B.V. In this paper, we study quantum error-correcting codes from skew constacyclic codes over the ring [Formula presented], where q=pm for any odd prime p and positive integer m. We decompose skew constacyclic codes over the ring R as a direct sum of skew constacyclic codes over Fq. Self-dual skew constacyclic codes over the ring R are characterized. Necessary and sufficient conditions for skew negacyclic and skew constacyclic codes to be dual-containing are obtained. As an application, we construct new quantum error-correcting codes from skew constacyclic codes over Fq.
format Journal
author Tushar Bag
Hai Q. Dinh
Ashish K. Upadhyay
Ramakrishna Bandi
Woraphon Yamaka
author_facet Tushar Bag
Hai Q. Dinh
Ashish K. Upadhyay
Ramakrishna Bandi
Woraphon Yamaka
author_sort Tushar Bag
title Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉
title_short Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉
title_full Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉
title_fullStr Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉
title_full_unstemmed Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉
title_sort quantum codes from skew constacyclic codes over the ring f<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉
publishDate 2020
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075757909&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68455
_version_ 1681426823092633600