Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉
© 2019 Elsevier B.V. In this paper, we study quantum error-correcting codes from skew constacyclic codes over the ring [Formula presented], where q=pm for any odd prime p and positive integer m. We decompose skew constacyclic codes over the ring R as a direct sum of skew constacyclic codes over Fq....
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Journal |
Published: |
2020
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075757909&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68455 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-68455 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-684552020-04-02T15:27:39Z Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉 Tushar Bag Hai Q. Dinh Ashish K. Upadhyay Ramakrishna Bandi Woraphon Yamaka Mathematics © 2019 Elsevier B.V. In this paper, we study quantum error-correcting codes from skew constacyclic codes over the ring [Formula presented], where q=pm for any odd prime p and positive integer m. We decompose skew constacyclic codes over the ring R as a direct sum of skew constacyclic codes over Fq. Self-dual skew constacyclic codes over the ring R are characterized. Necessary and sufficient conditions for skew negacyclic and skew constacyclic codes to be dual-containing are obtained. As an application, we construct new quantum error-correcting codes from skew constacyclic codes over Fq. 2020-04-02T15:27:39Z 2020-04-02T15:27:39Z 2020-03-01 Journal 0012365X 2-s2.0-85075757909 10.1016/j.disc.2019.111737 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075757909&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68455 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Mathematics |
spellingShingle |
Mathematics Tushar Bag Hai Q. Dinh Ashish K. Upadhyay Ramakrishna Bandi Woraphon Yamaka Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉 |
description |
© 2019 Elsevier B.V. In this paper, we study quantum error-correcting codes from skew constacyclic codes over the ring [Formula presented], where q=pm for any odd prime p and positive integer m. We decompose skew constacyclic codes over the ring R as a direct sum of skew constacyclic codes over Fq. Self-dual skew constacyclic codes over the ring R are characterized. Necessary and sufficient conditions for skew negacyclic and skew constacyclic codes to be dual-containing are obtained. As an application, we construct new quantum error-correcting codes from skew constacyclic codes over Fq. |
format |
Journal |
author |
Tushar Bag Hai Q. Dinh Ashish K. Upadhyay Ramakrishna Bandi Woraphon Yamaka |
author_facet |
Tushar Bag Hai Q. Dinh Ashish K. Upadhyay Ramakrishna Bandi Woraphon Yamaka |
author_sort |
Tushar Bag |
title |
Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉 |
title_short |
Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉 |
title_full |
Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉 |
title_fullStr |
Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉 |
title_full_unstemmed |
Quantum codes from skew constacyclic codes over the ring F<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉 |
title_sort |
quantum codes from skew constacyclic codes over the ring f<inf>q</inf>[u,v]∕〈u<sup>2</sup>−1,v<sup>2</sup>−1,uv−vu〉 |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075757909&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/68455 |
_version_ |
1681426823092633600 |