Solid angles and Seifert hypersurfaces

© 2020, The Author(s). Given a smooth closed oriented manifold M of dimension n embedded in Rn+2, we study properties of the ‘solid angle’ function Φ: Rn+2\ M→ S1. It turns out that a non-critical level set of Φ is an explicit Seifert hypersurface for M. This gives an explicit analytic construction...

Full description

Saved in:
Bibliographic Details
Main Authors: Maciej Borodzik, Supredee Dangskul, Andrew Ranicki
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85080992626&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68466
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2020, The Author(s). Given a smooth closed oriented manifold M of dimension n embedded in Rn+2, we study properties of the ‘solid angle’ function Φ: Rn+2\ M→ S1. It turns out that a non-critical level set of Φ is an explicit Seifert hypersurface for M. This gives an explicit analytic construction of a Seifert surface in higher dimensions.