Solid angles and Seifert hypersurfaces

© 2020, The Author(s). Given a smooth closed oriented manifold M of dimension n embedded in Rn+2, we study properties of the ‘solid angle’ function Φ: Rn+2\ M→ S1. It turns out that a non-critical level set of Φ is an explicit Seifert hypersurface for M. This gives an explicit analytic construction...

全面介紹

Saved in:
書目詳細資料
Main Authors: Maciej Borodzik, Supredee Dangskul, Andrew Ranicki
格式: 雜誌
出版: 2020
主題:
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85080992626&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68466
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
實物特徵
總結:© 2020, The Author(s). Given a smooth closed oriented manifold M of dimension n embedded in Rn+2, we study properties of the ‘solid angle’ function Φ: Rn+2\ M→ S1. It turns out that a non-critical level set of Φ is an explicit Seifert hypersurface for M. This gives an explicit analytic construction of a Seifert surface in higher dimensions.