การพัฒนาระบบพยากรณ์การเคลื่อนที่ของเมฆโดยใช้ภาพถ่ายผ่านดาวเทียมและเซนเซอร์ทางกายภาพ

This independent study is to develop and test a cloud movement prediction model applying an artificial neural network using data from satellite images and physical sensors. The predicted cloud images in Muang, Chiang Mai area for the next hour and three hours are generated from the proposed predict...

Full description

Saved in:
Bibliographic Details
Main Author: จตุรัฐ คำขาว
Other Authors: อาจารย์ ดร.ภาสกร แช่มประเสริฐ
Format: Independent Study
Language:Thai
Published: เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ 2020
Online Access:http://cmuir.cmu.ac.th/jspui/handle/6653943832/69250
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: Thai
id th-cmuir.6653943832-69250
record_format dspace
spelling th-cmuir.6653943832-692502020-08-01T07:29:46Z การพัฒนาระบบพยากรณ์การเคลื่อนที่ของเมฆโดยใช้ภาพถ่ายผ่านดาวเทียมและเซนเซอร์ทางกายภาพ Development of Cloud Movement Prediction Using Satellite Image and Physical Sensor จตุรัฐ คำขาว อาจารย์ ดร.ภาสกร แช่มประเสริฐ This independent study is to develop and test a cloud movement prediction model applying an artificial neural network using data from satellite images and physical sensors. The predicted cloud images in Muang, Chiang Mai area for the next hour and three hours are generated from the proposed prediction methods. There are two prediction methods, which are 1) absolute pixel image input, and 2) relative pixel image input. Each method conducts with four scenarios, according to physical sensors and prediction periods. Four scenarios are 1) scenario-1: the prediction with data from satellite images and physical sensors for next hour, 2) scenario-2: the prediction with only data from satellite images for next hour, 3) scenario-3: the prediction with data from satellite images and physical sensors for next three hours, and 4) scenario-4: the prediction with only data from satellite images for next three hours. The results show that the prediction using absolute pixel image is more accurate than using relative pixel image but the absolute pixel image method is much slower than the other for training network and testing. Scenario-1 is the most accurate prediction, the average mean squared error (MSE) is 0.0096. The comparison between next hour and three hours prediction found an hour is more accurate than three hours, the average MSE is 0.0132. Using physical sensors data is more accurate than not using, the average MSE is 0.0180. 2020-08-01T07:29:46Z 2020-08-01T07:29:46Z 2016-04 Independent Study (IS) http://cmuir.cmu.ac.th/jspui/handle/6653943832/69250 th เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
institution Chiang Mai University
building Chiang Mai University Library
continent Asia
country Thailand
Thailand
content_provider Chiang Mai University Library
collection CMU Intellectual Repository
language Thai
description This independent study is to develop and test a cloud movement prediction model applying an artificial neural network using data from satellite images and physical sensors. The predicted cloud images in Muang, Chiang Mai area for the next hour and three hours are generated from the proposed prediction methods. There are two prediction methods, which are 1) absolute pixel image input, and 2) relative pixel image input. Each method conducts with four scenarios, according to physical sensors and prediction periods. Four scenarios are 1) scenario-1: the prediction with data from satellite images and physical sensors for next hour, 2) scenario-2: the prediction with only data from satellite images for next hour, 3) scenario-3: the prediction with data from satellite images and physical sensors for next three hours, and 4) scenario-4: the prediction with only data from satellite images for next three hours. The results show that the prediction using absolute pixel image is more accurate than using relative pixel image but the absolute pixel image method is much slower than the other for training network and testing. Scenario-1 is the most accurate prediction, the average mean squared error (MSE) is 0.0096. The comparison between next hour and three hours prediction found an hour is more accurate than three hours, the average MSE is 0.0132. Using physical sensors data is more accurate than not using, the average MSE is 0.0180.
author2 อาจารย์ ดร.ภาสกร แช่มประเสริฐ
author_facet อาจารย์ ดร.ภาสกร แช่มประเสริฐ
จตุรัฐ คำขาว
format Independent Study
author จตุรัฐ คำขาว
spellingShingle จตุรัฐ คำขาว
การพัฒนาระบบพยากรณ์การเคลื่อนที่ของเมฆโดยใช้ภาพถ่ายผ่านดาวเทียมและเซนเซอร์ทางกายภาพ
author_sort จตุรัฐ คำขาว
title การพัฒนาระบบพยากรณ์การเคลื่อนที่ของเมฆโดยใช้ภาพถ่ายผ่านดาวเทียมและเซนเซอร์ทางกายภาพ
title_short การพัฒนาระบบพยากรณ์การเคลื่อนที่ของเมฆโดยใช้ภาพถ่ายผ่านดาวเทียมและเซนเซอร์ทางกายภาพ
title_full การพัฒนาระบบพยากรณ์การเคลื่อนที่ของเมฆโดยใช้ภาพถ่ายผ่านดาวเทียมและเซนเซอร์ทางกายภาพ
title_fullStr การพัฒนาระบบพยากรณ์การเคลื่อนที่ของเมฆโดยใช้ภาพถ่ายผ่านดาวเทียมและเซนเซอร์ทางกายภาพ
title_full_unstemmed การพัฒนาระบบพยากรณ์การเคลื่อนที่ของเมฆโดยใช้ภาพถ่ายผ่านดาวเทียมและเซนเซอร์ทางกายภาพ
title_sort การพัฒนาระบบพยากรณ์การเคลื่อนที่ของเมฆโดยใช้ภาพถ่ายผ่านดาวเทียมและเซนเซอร์ทางกายภาพ
publisher เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
publishDate 2020
url http://cmuir.cmu.ac.th/jspui/handle/6653943832/69250
_version_ 1681752623913369600