ระบบนิวโรฟัซซีเพื่อจำแนกเสียงร้องของเด็กทารก
This thesis presents recognition and classification algorithm for infant sounds. This algorithm has the highest accuracy comparing with other algorithms. The infant sounds used in this thesis are identified from an expert and there are 5 meanings including feeling hungry, feeling sleepy, feeling dis...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | Thai |
Published: |
เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
2020
|
Online Access: | http://cmuir.cmu.ac.th/jspui/handle/6653943832/69260 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | Thai |
id |
th-cmuir.6653943832-69260 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-692602020-08-03T07:38:40Z ระบบนิวโรฟัซซีเพื่อจำแนกเสียงร้องของเด็กทารก Neuro-fuzzy System for Infant Cry Classification กฤตคม ศรีจิรานนท์ อาจารย์ ดร.นริศรา เอี่ยมคณิตชาติ This thesis presents recognition and classification algorithm for infant sounds. This algorithm has the highest accuracy comparing with other algorithms. The infant sounds used in this thesis are identified from an expert and there are 5 meanings including feeling hungry, feeling sleepy, feeling discomfort, having lower gas and needing to be burped. 251 data sets of infant sounds are tested in this thesis. The first process of algorithm used the popular feature extraction algorithm, i.e., Mel Frequency Cepatral Coefficients (MFCC), Perceptual Linear Prediction (PLP) and Relative Spectral (RASTA) for extract feature vectors from data set. Then, the data set is used in recognition and classification process. This process is divided into two parts. The first part, recognition, has three sub processes which are Neural Network, Data Normalization and Fuzzy Logic. The second part, classification, uses K-nearest Neighbor classifier. This thesis finds the appropriate structure from many experiments. The result shows that the proposed algorithm has higher accuracy in infant sound classification than other algorithms and has 86.25% accuracy. Moreover, this thesis designs experiments for using proposed algorithm with Thai words. In the experiment, there are many factors such as noise, pronunciation and number of words. The experimental result shows that the proposed algorithm has high accuracy in classification. 2020-08-03T07:38:40Z 2020-08-03T07:38:40Z 2015-03 Thesis http://cmuir.cmu.ac.th/jspui/handle/6653943832/69260 th เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Chiang Mai University Library |
collection |
CMU Intellectual Repository |
language |
Thai |
description |
This thesis presents recognition and classification algorithm for infant sounds. This algorithm has the highest accuracy comparing with other algorithms. The infant sounds used in this thesis are identified from an expert and there are 5 meanings including feeling hungry, feeling sleepy, feeling discomfort, having lower gas and needing to be burped. 251 data sets of infant sounds are tested in this thesis. The first process of algorithm used the popular feature extraction algorithm, i.e., Mel Frequency Cepatral Coefficients (MFCC), Perceptual Linear Prediction (PLP) and Relative Spectral (RASTA) for extract feature vectors from data set. Then, the data set is used in recognition and classification process. This process is divided into two parts. The first part, recognition, has three sub processes which are Neural Network, Data Normalization and Fuzzy Logic. The second part, classification, uses K-nearest Neighbor classifier. This thesis finds the appropriate structure from many experiments. The result shows that the proposed algorithm has higher accuracy in infant sound classification than other algorithms and has 86.25% accuracy.
Moreover, this thesis designs experiments for using proposed algorithm with Thai words. In the experiment, there are many factors such as noise, pronunciation and number of words. The experimental result shows that the proposed algorithm has high accuracy in classification. |
author2 |
อาจารย์ ดร.นริศรา เอี่ยมคณิตชาติ |
author_facet |
อาจารย์ ดร.นริศรา เอี่ยมคณิตชาติ กฤตคม ศรีจิรานนท์ |
format |
Theses and Dissertations |
author |
กฤตคม ศรีจิรานนท์ |
spellingShingle |
กฤตคม ศรีจิรานนท์ ระบบนิวโรฟัซซีเพื่อจำแนกเสียงร้องของเด็กทารก |
author_sort |
กฤตคม ศรีจิรานนท์ |
title |
ระบบนิวโรฟัซซีเพื่อจำแนกเสียงร้องของเด็กทารก |
title_short |
ระบบนิวโรฟัซซีเพื่อจำแนกเสียงร้องของเด็กทารก |
title_full |
ระบบนิวโรฟัซซีเพื่อจำแนกเสียงร้องของเด็กทารก |
title_fullStr |
ระบบนิวโรฟัซซีเพื่อจำแนกเสียงร้องของเด็กทารก |
title_full_unstemmed |
ระบบนิวโรฟัซซีเพื่อจำแนกเสียงร้องของเด็กทารก |
title_sort |
ระบบนิวโรฟัซซีเพื่อจำแนกเสียงร้องของเด็กทารก |
publisher |
เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ |
publishDate |
2020 |
url |
http://cmuir.cmu.ac.th/jspui/handle/6653943832/69260 |
_version_ |
1681752625690705920 |