Neuroprotective Effects of Di-O-demethylcurcumin in Aβ25-35 Induced Neurotoxicity in SK-N-SH Cell Line

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. The hallmark of pathological AD is amyloid plaque which is the accumulation of amyloid β (Aβ) in extracellular neuronal cells, which leads to neurotoxicity via reactive oxygen species (ROS) generation related apoptosis. Neuronal c...

Full description

Saved in:
Bibliographic Details
Main Author: Decha Pinkaew
Other Authors: Asst. Prof. Dr. Jiraporn Tocharus
Format: Theses and Dissertations
Language:English
Published: เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ 2020
Online Access:http://cmuir.cmu.ac.th/jspui/handle/6653943832/69322
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-69322
record_format dspace
spelling th-cmuir.6653943832-693222020-08-05T03:49:45Z Neuroprotective Effects of Di-O-demethylcurcumin in Aβ25-35 Induced Neurotoxicity in SK-N-SH Cell Line ฤทธิ์ป้องกันของไดโอดีเมทิลเคอร์คูมินต่อความเป็นพิษของเซลล์ประสาทเพาะเลี้ยงเอสเคเอนเอสเอซที่ถูกกระตุ้นด้วยบีตาอะไมลอยด์ Decha Pinkaew Asst. Prof. Dr. Jiraporn Tocharus Asst. Prof. Dr. Anusorn Lungkaphin Asst. Prof. Dr. Anchalee Pongchaidecha Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. The hallmark of pathological AD is amyloid plaque which is the accumulation of amyloid β (Aβ) in extracellular neuronal cells, which leads to neurotoxicity via reactive oxygen species (ROS) generation related apoptosis. Neuronal cell death is the main cause of brain dysfunction and cognitive impairment. Aβ activates neuronal death via endoplasmic reticulum (ER) stress, mitochondria apoptosis and neuroinflammatory pathway. This study investigated the underlying mechanisms and effects of di-O-demethylcurcumin in preventing Aβ-induced apoptosis. Pretreatment with di-O-demethylcurcumin for 2 h, which was followed by Aβ25-35 (10 μM) in human neuroblastoma SK-N-SH cells improved cell viability and decreased neuronal cell apoptosis. Di-O-demethylcurcumin also increased the ratio of Bcl-XL/Bax protein, and reduced intracellular ROS level, cytochrome c protein expression, cleaved caspase-9 protein expression, and cleaved caspase-3 protein expression in mitochondria apoptosis pathway. Additionally, di-O-demethylcurcumin treatment also reduced the expression of ER stress protein markers, including protein kinase RNA like endoplasmic reticulum kinase (PERK) phosphorylation, eukaryotic translation initiation factor 2alpha (eIF2α) phosphorylation, inositol-requiring enzyme 1 (IRE1) phosphorylation, X-box-binding protein-1 (XBP-1), activating transcription factor (ATF6), C/EBP homologous protein (CHOP), and cleaved caspase-12 protein. CHOP and cleaved caspase-12 protein are the key mediators of apoptosis. Moreover, di-O-demethylcurcumin activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and the suppression nuclear of factor-κB (NF-κB) signaling pathway and their downstream targets. The results showed that treatment with di-O-demethylcurcumin promoted the translocation of Nrf2 protein from the cytoplasm to the nucleus, increased the expression of Nrf2-ARE pathway-related downstream proteins including hemeoxygenase (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and glutamate-cystein ligase catalytic subunit (γ-GCLC), and increased superoxide dismutase (SOD) enzymes activity. On the other hand, di-O-demethylcurcumin suppressed the degradation of IKBα, translocation of the p65 subunit of NF-κB from cytoplasm to nucleus and thereby, attenuated the expression of inducible nitric oxide synthase (iNOS) protein and nitric oxide (NO) production. Taken together, these results suggest that di-O-demethylcurcumin might involve a candidate potential protectant for regulating of endoplasmic reticulum (ER) stress, mitochondria apoptosis and neuroinflammatory pathway induced by Aβ25-35. 2020-08-05T03:49:44Z 2020-08-05T03:49:44Z 2015-02 Thesis http://cmuir.cmu.ac.th/jspui/handle/6653943832/69322 en เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
institution Chiang Mai University
building Chiang Mai University Library
continent Asia
country Thailand
Thailand
content_provider Chiang Mai University Library
collection CMU Intellectual Repository
language English
description Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. The hallmark of pathological AD is amyloid plaque which is the accumulation of amyloid β (Aβ) in extracellular neuronal cells, which leads to neurotoxicity via reactive oxygen species (ROS) generation related apoptosis. Neuronal cell death is the main cause of brain dysfunction and cognitive impairment. Aβ activates neuronal death via endoplasmic reticulum (ER) stress, mitochondria apoptosis and neuroinflammatory pathway. This study investigated the underlying mechanisms and effects of di-O-demethylcurcumin in preventing Aβ-induced apoptosis. Pretreatment with di-O-demethylcurcumin for 2 h, which was followed by Aβ25-35 (10 μM) in human neuroblastoma SK-N-SH cells improved cell viability and decreased neuronal cell apoptosis. Di-O-demethylcurcumin also increased the ratio of Bcl-XL/Bax protein, and reduced intracellular ROS level, cytochrome c protein expression, cleaved caspase-9 protein expression, and cleaved caspase-3 protein expression in mitochondria apoptosis pathway. Additionally, di-O-demethylcurcumin treatment also reduced the expression of ER stress protein markers, including protein kinase RNA like endoplasmic reticulum kinase (PERK) phosphorylation, eukaryotic translation initiation factor 2alpha (eIF2α) phosphorylation, inositol-requiring enzyme 1 (IRE1) phosphorylation, X-box-binding protein-1 (XBP-1), activating transcription factor (ATF6), C/EBP homologous protein (CHOP), and cleaved caspase-12 protein. CHOP and cleaved caspase-12 protein are the key mediators of apoptosis. Moreover, di-O-demethylcurcumin activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and the suppression nuclear of factor-κB (NF-κB) signaling pathway and their downstream targets. The results showed that treatment with di-O-demethylcurcumin promoted the translocation of Nrf2 protein from the cytoplasm to the nucleus, increased the expression of Nrf2-ARE pathway-related downstream proteins including hemeoxygenase (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and glutamate-cystein ligase catalytic subunit (γ-GCLC), and increased superoxide dismutase (SOD) enzymes activity. On the other hand, di-O-demethylcurcumin suppressed the degradation of IKBα, translocation of the p65 subunit of NF-κB from cytoplasm to nucleus and thereby, attenuated the expression of inducible nitric oxide synthase (iNOS) protein and nitric oxide (NO) production. Taken together, these results suggest that di-O-demethylcurcumin might involve a candidate potential protectant for regulating of endoplasmic reticulum (ER) stress, mitochondria apoptosis and neuroinflammatory pathway induced by Aβ25-35.
author2 Asst. Prof. Dr. Jiraporn Tocharus
author_facet Asst. Prof. Dr. Jiraporn Tocharus
Decha Pinkaew
format Theses and Dissertations
author Decha Pinkaew
spellingShingle Decha Pinkaew
Neuroprotective Effects of Di-O-demethylcurcumin in Aβ25-35 Induced Neurotoxicity in SK-N-SH Cell Line
author_sort Decha Pinkaew
title Neuroprotective Effects of Di-O-demethylcurcumin in Aβ25-35 Induced Neurotoxicity in SK-N-SH Cell Line
title_short Neuroprotective Effects of Di-O-demethylcurcumin in Aβ25-35 Induced Neurotoxicity in SK-N-SH Cell Line
title_full Neuroprotective Effects of Di-O-demethylcurcumin in Aβ25-35 Induced Neurotoxicity in SK-N-SH Cell Line
title_fullStr Neuroprotective Effects of Di-O-demethylcurcumin in Aβ25-35 Induced Neurotoxicity in SK-N-SH Cell Line
title_full_unstemmed Neuroprotective Effects of Di-O-demethylcurcumin in Aβ25-35 Induced Neurotoxicity in SK-N-SH Cell Line
title_sort neuroprotective effects of di-o-demethylcurcumin in aβ25-35 induced neurotoxicity in sk-n-sh cell line
publisher เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
publishDate 2020
url http://cmuir.cmu.ac.th/jspui/handle/6653943832/69322
_version_ 1681752636682928128