Electroencephalography-based Imagery Movement Classification Using Support Vector Machine and Autoregressive Power Spectral Estimation

The main purpose of this thesis is about motor imagery classification to enhance communication capability for motor neuron disease patients, especially, those who cannot move their voluntary muscles such as Amyotrophic Lateral Sclerosis (ALS) or Locked-In Syndrome (LIS) patients. ALS is a progressiv...

Full description

Saved in:
Bibliographic Details
Main Author: Pornwitcha Somsap
Other Authors: Associate Professor Dr. Nipon Theera-Umpon
Format: Theses and Dissertations
Language:English
Published: เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ 2020
Online Access:http://cmuir.cmu.ac.th/jspui/handle/6653943832/69637
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-69637
record_format dspace
spelling th-cmuir.6653943832-696372020-08-18T02:44:50Z Electroencephalography-based Imagery Movement Classification Using Support Vector Machine and Autoregressive Power Spectral Estimation การจำแนกคลื่นสมองมโนภาพการเคลื่อนไหวโดยใช้ซัพพอร์ตเวกเตอร์แมชีนและการประมาณความหนาแน่นสเปกตรัมกำลังด้วยแบบจำลองออโตรีเกรสซีฟ Pornwitcha Somsap Associate Professor Dr. Nipon Theera-Umpon The main purpose of this thesis is about motor imagery classification to enhance communication capability for motor neuron disease patients, especially, those who cannot move their voluntary muscles such as Amyotrophic Lateral Sclerosis (ALS) or Locked-In Syndrome (LIS) patients. ALS is a progressive or damaged nervous system disease that affects nerve cells in the brain and spinal cord causing loss of muscle control. The symptoms of ALS are varied depending on the severity of damaged neurons. Signs and symptoms might include weakness, cramps, and twitching in the muscle. Likewise, the LIS patients cannot move their bodies except their eyes. Thus, ALS and LIS patients suffer to do necessary activities in daily living. According to the mentioned problems, this study focuses on the electroencephalography signal (EEG signal) because a patient’s brain still can function among the uncontrollable muscles. Additionally, the EEG signal can represent what the patient wants to communicate. Since an imagery hand movement is considered as a basic and simply thinking, it is used as the control activity for the experiment. The imagery left and right-hand movement can represent a basic answer (yes/no) or grasping (using the left or right hand). In this thesis, the EEG signal is collected and separated into 3 groups including imagery left-hand movement, right-hand movement, and relaxed state. There are 2 datasets, first is downloaded from a public EEG dataset and the other is recorded from a wireless EEG device. The signal is preprocessed and extracted features to build the model used for classification. The results show that the classification accuracy reaches almost 100% using the 5-fold cross validation. 2020-08-18T02:44:50Z 2020-08-18T02:44:50Z 2020-05 Thesis http://cmuir.cmu.ac.th/jspui/handle/6653943832/69637 en เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
institution Chiang Mai University
building Chiang Mai University Library
continent Asia
country Thailand
Thailand
content_provider Chiang Mai University Library
collection CMU Intellectual Repository
language English
description The main purpose of this thesis is about motor imagery classification to enhance communication capability for motor neuron disease patients, especially, those who cannot move their voluntary muscles such as Amyotrophic Lateral Sclerosis (ALS) or Locked-In Syndrome (LIS) patients. ALS is a progressive or damaged nervous system disease that affects nerve cells in the brain and spinal cord causing loss of muscle control. The symptoms of ALS are varied depending on the severity of damaged neurons. Signs and symptoms might include weakness, cramps, and twitching in the muscle. Likewise, the LIS patients cannot move their bodies except their eyes. Thus, ALS and LIS patients suffer to do necessary activities in daily living. According to the mentioned problems, this study focuses on the electroencephalography signal (EEG signal) because a patient’s brain still can function among the uncontrollable muscles. Additionally, the EEG signal can represent what the patient wants to communicate. Since an imagery hand movement is considered as a basic and simply thinking, it is used as the control activity for the experiment. The imagery left and right-hand movement can represent a basic answer (yes/no) or grasping (using the left or right hand). In this thesis, the EEG signal is collected and separated into 3 groups including imagery left-hand movement, right-hand movement, and relaxed state. There are 2 datasets, first is downloaded from a public EEG dataset and the other is recorded from a wireless EEG device. The signal is preprocessed and extracted features to build the model used for classification. The results show that the classification accuracy reaches almost 100% using the 5-fold cross validation.
author2 Associate Professor Dr. Nipon Theera-Umpon
author_facet Associate Professor Dr. Nipon Theera-Umpon
Pornwitcha Somsap
format Theses and Dissertations
author Pornwitcha Somsap
spellingShingle Pornwitcha Somsap
Electroencephalography-based Imagery Movement Classification Using Support Vector Machine and Autoregressive Power Spectral Estimation
author_sort Pornwitcha Somsap
title Electroencephalography-based Imagery Movement Classification Using Support Vector Machine and Autoregressive Power Spectral Estimation
title_short Electroencephalography-based Imagery Movement Classification Using Support Vector Machine and Autoregressive Power Spectral Estimation
title_full Electroencephalography-based Imagery Movement Classification Using Support Vector Machine and Autoregressive Power Spectral Estimation
title_fullStr Electroencephalography-based Imagery Movement Classification Using Support Vector Machine and Autoregressive Power Spectral Estimation
title_full_unstemmed Electroencephalography-based Imagery Movement Classification Using Support Vector Machine and Autoregressive Power Spectral Estimation
title_sort electroencephalography-based imagery movement classification using support vector machine and autoregressive power spectral estimation
publisher เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่
publishDate 2020
url http://cmuir.cmu.ac.th/jspui/handle/6653943832/69637
_version_ 1681752756952498176