D-galactose-induced aging does not cause further deterioration in brain pathologies and cognitive decline in the obese condition
© 2020 Elsevier Inc. Largely as a consequence of changes in modern lifestyle, a significant proportion of global population have become obese. When obese people grow old, pathologies aggravate neurodegeneration. Several studies have demonstrated that both aging and obesity have deleterious impact on...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Journal |
Published: |
2020
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085937104&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70171 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-70171 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-701712020-10-14T08:25:08Z D-galactose-induced aging does not cause further deterioration in brain pathologies and cognitive decline in the obese condition Thazin Shwe Cherry Bo-Htay Tom Leech Benjamin Ongnok Thidarat Jaiwongkum Sasiwan Kerdphoo Siripong Palee Wasana Pratchayasakul Nipon Chattipakorn Siriporn C. Chattipakorn Biochemistry, Genetics and Molecular Biology © 2020 Elsevier Inc. Largely as a consequence of changes in modern lifestyle, a significant proportion of global population have become obese. When obese people grow old, pathologies aggravate neurodegeneration. Several studies have demonstrated that both aging and obesity have deleterious impact on brain. However, the time course effects of combined aging-induced by D-galactose and obesity caused by high-fat diet on cognitive and brain function have not been explored. We hypothesize that D-galactose accelerates and aggravates brain pathologies and cognitive dysfunction in the state of obesity. Ninety-six Wistar rats were separated into two groups to be fed with either a normal diet (ND) or a high-fat diet (HFD) for 16 to 20 weeks. At the end of 12 weeks, ND and HFD-fed rats were injected with vehicle (0.9% NSS, s.c) or D-galactose (150 mg/kg/d, s.c) for 4 or 8 weeks. Data from behavioral test, metabolic parameters and brain pathologies were determined at 4 and 8-weeks after D-galactose administration. The results from both D-galactose-treated rats and HFD-fed rats showed that there was an equal increase in advanced glycation end products, and microglial activation, and an impairment in long-term depression, long-term potentiation, and synaptic protein and dendritic spine density in hippocampus, resulting in cognitive decline. However, D-galactose did not accelerate or aggravate these parameters and cognitive decline in HFD-fed rats. These results suggest that aging, obesity, and combined model have equally adverse effects on cognition. These findings can be used to increase public awareness of the negative impact of both aging and obesity on neurodegeneration. 2020-10-14T08:25:08Z 2020-10-14T08:25:08Z 2020-09-01 Journal 18736815 05315565 2-s2.0-85085937104 10.1016/j.exger.2020.111001 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085937104&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70171 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Chiang Mai University Library |
collection |
CMU Intellectual Repository |
topic |
Biochemistry, Genetics and Molecular Biology |
spellingShingle |
Biochemistry, Genetics and Molecular Biology Thazin Shwe Cherry Bo-Htay Tom Leech Benjamin Ongnok Thidarat Jaiwongkum Sasiwan Kerdphoo Siripong Palee Wasana Pratchayasakul Nipon Chattipakorn Siriporn C. Chattipakorn D-galactose-induced aging does not cause further deterioration in brain pathologies and cognitive decline in the obese condition |
description |
© 2020 Elsevier Inc. Largely as a consequence of changes in modern lifestyle, a significant proportion of global population have become obese. When obese people grow old, pathologies aggravate neurodegeneration. Several studies have demonstrated that both aging and obesity have deleterious impact on brain. However, the time course effects of combined aging-induced by D-galactose and obesity caused by high-fat diet on cognitive and brain function have not been explored. We hypothesize that D-galactose accelerates and aggravates brain pathologies and cognitive dysfunction in the state of obesity. Ninety-six Wistar rats were separated into two groups to be fed with either a normal diet (ND) or a high-fat diet (HFD) for 16 to 20 weeks. At the end of 12 weeks, ND and HFD-fed rats were injected with vehicle (0.9% NSS, s.c) or D-galactose (150 mg/kg/d, s.c) for 4 or 8 weeks. Data from behavioral test, metabolic parameters and brain pathologies were determined at 4 and 8-weeks after D-galactose administration. The results from both D-galactose-treated rats and HFD-fed rats showed that there was an equal increase in advanced glycation end products, and microglial activation, and an impairment in long-term depression, long-term potentiation, and synaptic protein and dendritic spine density in hippocampus, resulting in cognitive decline. However, D-galactose did not accelerate or aggravate these parameters and cognitive decline in HFD-fed rats. These results suggest that aging, obesity, and combined model have equally adverse effects on cognition. These findings can be used to increase public awareness of the negative impact of both aging and obesity on neurodegeneration. |
format |
Journal |
author |
Thazin Shwe Cherry Bo-Htay Tom Leech Benjamin Ongnok Thidarat Jaiwongkum Sasiwan Kerdphoo Siripong Palee Wasana Pratchayasakul Nipon Chattipakorn Siriporn C. Chattipakorn |
author_facet |
Thazin Shwe Cherry Bo-Htay Tom Leech Benjamin Ongnok Thidarat Jaiwongkum Sasiwan Kerdphoo Siripong Palee Wasana Pratchayasakul Nipon Chattipakorn Siriporn C. Chattipakorn |
author_sort |
Thazin Shwe |
title |
D-galactose-induced aging does not cause further deterioration in brain pathologies and cognitive decline in the obese condition |
title_short |
D-galactose-induced aging does not cause further deterioration in brain pathologies and cognitive decline in the obese condition |
title_full |
D-galactose-induced aging does not cause further deterioration in brain pathologies and cognitive decline in the obese condition |
title_fullStr |
D-galactose-induced aging does not cause further deterioration in brain pathologies and cognitive decline in the obese condition |
title_full_unstemmed |
D-galactose-induced aging does not cause further deterioration in brain pathologies and cognitive decline in the obese condition |
title_sort |
d-galactose-induced aging does not cause further deterioration in brain pathologies and cognitive decline in the obese condition |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085937104&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70171 |
_version_ |
1681752854092578816 |