The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury

© 2020 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd Despite advancements in management of acute myocardial infarction, this disease remains one of the leading causes of death. Timely reestablishment of epicardial coronary blood flow is the cornerstone of therapy; howe...

Full description

Saved in:
Bibliographic Details
Main Authors: Luo Ying, Juthipong Benjanuwattra, Siriporn C. Chattipakorn, Nipon Chattipakorn
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089097774&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/70255
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-70255
record_format dspace
spelling th-cmuir.6653943832-702552020-10-14T08:26:28Z The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury Luo Ying Juthipong Benjanuwattra Siriporn C. Chattipakorn Nipon Chattipakorn Biochemistry, Genetics and Molecular Biology © 2020 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd Despite advancements in management of acute myocardial infarction, this disease remains one of the leading causes of death. Timely reestablishment of epicardial coronary blood flow is the cornerstone of therapy; however, substantial amount of damage can occur as a consequence of cardiac ischaemia/reperfusion (I/R) injury. It has been previously proposed that the pathway leading to major cell death, apoptosis, is responsible for cardiac I/R injury. Nevertheless, there is compelling evidence to suggest that necroptosis, a programmed necrosis, contributes remarkably to both myocardial injury and microcirculatory dysfunction following cardiac I/R injury. Receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like pseudokinase (MLKL) are shown as the major mediators of necroptosis. In addition to the traditional perception that RIPK1/RIPK3/MLKL-dependent plasma membrane rupture is fundamental to this process, several RIPK3-related pathways such as endoplasmic reticulum stress and mitochondrial fragmentation have also been implicated in cardiac I/R injury. In this review, reports from both in vitro and in vivo studies regarding the roles of necroptosis and RIPK3-regulated necrosis in cardiac I/R injury have been collectively summarized and discussed. Furthermore, reports on potential interventions targeting these processes to attenuate cardiac I/R insults to the heart have been presented in this review. Future investigations adding to the knowledge obtained from these previous studies are needed in the pursuit of discovering the most effective pharmacological agent to improve cardiac I/R outcomes. 2020-10-14T08:26:28Z 2020-10-14T08:26:28Z 2020-01-01 Journal 17481716 17481708 2-s2.0-85089097774 10.1111/apha.13541 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089097774&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70255
institution Chiang Mai University
building Chiang Mai University Library
continent Asia
country Thailand
Thailand
content_provider Chiang Mai University Library
collection CMU Intellectual Repository
topic Biochemistry, Genetics and Molecular Biology
spellingShingle Biochemistry, Genetics and Molecular Biology
Luo Ying
Juthipong Benjanuwattra
Siriporn C. Chattipakorn
Nipon Chattipakorn
The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury
description © 2020 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd Despite advancements in management of acute myocardial infarction, this disease remains one of the leading causes of death. Timely reestablishment of epicardial coronary blood flow is the cornerstone of therapy; however, substantial amount of damage can occur as a consequence of cardiac ischaemia/reperfusion (I/R) injury. It has been previously proposed that the pathway leading to major cell death, apoptosis, is responsible for cardiac I/R injury. Nevertheless, there is compelling evidence to suggest that necroptosis, a programmed necrosis, contributes remarkably to both myocardial injury and microcirculatory dysfunction following cardiac I/R injury. Receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like pseudokinase (MLKL) are shown as the major mediators of necroptosis. In addition to the traditional perception that RIPK1/RIPK3/MLKL-dependent plasma membrane rupture is fundamental to this process, several RIPK3-related pathways such as endoplasmic reticulum stress and mitochondrial fragmentation have also been implicated in cardiac I/R injury. In this review, reports from both in vitro and in vivo studies regarding the roles of necroptosis and RIPK3-regulated necrosis in cardiac I/R injury have been collectively summarized and discussed. Furthermore, reports on potential interventions targeting these processes to attenuate cardiac I/R insults to the heart have been presented in this review. Future investigations adding to the knowledge obtained from these previous studies are needed in the pursuit of discovering the most effective pharmacological agent to improve cardiac I/R outcomes.
format Journal
author Luo Ying
Juthipong Benjanuwattra
Siriporn C. Chattipakorn
Nipon Chattipakorn
author_facet Luo Ying
Juthipong Benjanuwattra
Siriporn C. Chattipakorn
Nipon Chattipakorn
author_sort Luo Ying
title The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury
title_short The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury
title_full The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury
title_fullStr The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury
title_full_unstemmed The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury
title_sort role of ripk3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury
publishDate 2020
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089097774&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/70255
_version_ 1681752869520277504