Physical and mechanical properties of diatomite/metakaolin-based geopolymer for construction materials

© 2020, Chiang Mai University. All rights reserved. In this study, the geopolymer materials were prepared by geopolymerization process, using calcined diatomite (from Lampang province) and metakaolin (from Ranong province) with alkali activators (NaOH and Na2SiO3 solutions). The fresh slurry was cas...

Full description

Saved in:
Bibliographic Details
Main Authors: Suwanan Thammarong, Narumon Lertcumfu, Pharatree Jaita, Nuttaporn Pimpha, Tawee Tunkasiri, Gobwute Rujijanagul, Pruchya Malasri
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85090684461&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/70277
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2020, Chiang Mai University. All rights reserved. In this study, the geopolymer materials were prepared by geopolymerization process, using calcined diatomite (from Lampang province) and metakaolin (from Ranong province) with alkali activators (NaOH and Na2SiO3 solutions). The fresh slurry was casted in a plastic mold with cubic shape and cured at room temperature. Effects of calcination temperature of diatomite were investigated. Material characterizations, including XRD, XRF, and SEM, were used in this work. The maximum density of the geopolymer samples was 1.43 g/cm3, observed for the sample containing diatomite which calcined at 700 °C. To determine the mechanical property (compressive strength), the geopolymers were tested after the curing process (for 28 days). The result suggested that the compressive strength of the samples can be linked with the porosity of the samples, where the sample contained diatomite which calcined at 700 °C had the highest compressive strength of 18.90 MPa.