Convergence analysis of the higher-order global mass-preserving numerical method for the symmetric regularized long wave equation
© 2020, © 2020 Taylor & Francis. A higher-order uncoupled finite difference scheme is proposed and analyzed to approximate the solutions of the symmetric regularized long wave equation. The finite difference technique preserving the global conservation laws precisely on any time-space regions...
Saved in:
Main Authors: | J. Kerdboon, S. Yimnet, B. Wongsaijai, T. Mouktonglang, K. Poochinapan |
---|---|
格式: | 雜誌 |
出版: |
2020
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087791511&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70447 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
相似書籍
-
Numerical implementation for solving the symmetric regularized long wave equation
由: S. Yimnet, et al.
出版: (2018) -
Numerical implementation for solving the symmetric regularized long wave equation
由: Yimnet S., et al.
出版: (2017) -
Compact structure-preserving approach to solitary wave in shallow water modeled by the Rosenau-RLW equation
由: B. Wongsaijai, et al.
出版: (2018) -
A mass-conservative higher-order ADI method for solving unsteady convection–diffusion equations
由: Ben Wongsaijai, et al.
出版: (2020) -
Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation
由: R. Chousurin, et al.
出版: (2020)