Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩

© 2013 IEEE. Let F2m be a finite field of 2m elements, λ and k be integers satisfying λ,k ≥ 2 and denote R= F2m[u]/&lsaquo; u2λ &rsaquo;. Let δ,α F2m×. For any odd positive integer n, we give an explicit representation and enumeration for all distinct (δ +α u2)-constacyclic codes over R of l...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuan Cao, Yonglin Cao, Hai Q. Dinh, Tushar Bag, Woraphon Yamaka
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082832767&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/70464
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-70464
record_format dspace
spelling th-cmuir.6653943832-704642020-10-14T08:39:25Z Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩ Yuan Cao Yonglin Cao Hai Q. Dinh Tushar Bag Woraphon Yamaka Computer Science Engineering Materials Science © 2013 IEEE. Let F2m be a finite field of 2m elements, λ and k be integers satisfying λ,k ≥ 2 and denote R= F2m[u]/&lsaquo; u2λ &rsaquo;. Let δ,α F2m×. For any odd positive integer n, we give an explicit representation and enumeration for all distinct (δ +α u2)-constacyclic codes over R of length 2kn, and provide a clear formula to count the number of all these codes. In particular, we conclude that every (δ +α u2)-constacyclic code over R of length 2kn is an ideal generated by at most 2 polynomials in the ring R[x]/&lsaquo; x2kn-(δ +α u2)&rsaquo;. As an example, we listed all 135 distinct (1+u2)-constacyclic codes of length 4 over F2[u]/&lsaquo; u4&rsaquo;, and apply our results to determine all 11 self-dual codes among them. 2020-10-14T08:31:20Z 2020-10-14T08:31:20Z 2020-01-01 Journal 21693536 2-s2.0-85082832767 10.1109/ACCESS.2020.2981453 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082832767&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70464
institution Chiang Mai University
building Chiang Mai University Library
continent Asia
country Thailand
Thailand
content_provider Chiang Mai University Library
collection CMU Intellectual Repository
topic Computer Science
Engineering
Materials Science
spellingShingle Computer Science
Engineering
Materials Science
Yuan Cao
Yonglin Cao
Hai Q. Dinh
Tushar Bag
Woraphon Yamaka
Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩
description © 2013 IEEE. Let F2m be a finite field of 2m elements, λ and k be integers satisfying λ,k ≥ 2 and denote R= F2m[u]/&lsaquo; u2λ &rsaquo;. Let δ,α F2m×. For any odd positive integer n, we give an explicit representation and enumeration for all distinct (δ +α u2)-constacyclic codes over R of length 2kn, and provide a clear formula to count the number of all these codes. In particular, we conclude that every (δ +α u2)-constacyclic code over R of length 2kn is an ideal generated by at most 2 polynomials in the ring R[x]/&lsaquo; x2kn-(δ +α u2)&rsaquo;. As an example, we listed all 135 distinct (1+u2)-constacyclic codes of length 4 over F2[u]/&lsaquo; u4&rsaquo;, and apply our results to determine all 11 self-dual codes among them.
format Journal
author Yuan Cao
Yonglin Cao
Hai Q. Dinh
Tushar Bag
Woraphon Yamaka
author_facet Yuan Cao
Yonglin Cao
Hai Q. Dinh
Tushar Bag
Woraphon Yamaka
author_sort Yuan Cao
title Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩
title_short Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩
title_full Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩
title_fullStr Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩
title_full_unstemmed Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩
title_sort explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-constacyclic codes over f<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩
publishDate 2020
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082832767&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/70464
_version_ 1681752907465097216