Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩
© 2013 IEEE. Let F2m be a finite field of 2m elements, λ and k be integers satisfying λ,k ≥ 2 and denote R= F2m[u]/‹ u2λ ›. Let δ,α F2m×. For any odd positive integer n, we give an explicit representation and enumeration for all distinct (δ +α u2)-constacyclic codes over R of l...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Journal |
Published: |
2020
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082832767&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70464 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-70464 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-704642020-10-14T08:39:25Z Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩ Yuan Cao Yonglin Cao Hai Q. Dinh Tushar Bag Woraphon Yamaka Computer Science Engineering Materials Science © 2013 IEEE. Let F2m be a finite field of 2m elements, λ and k be integers satisfying λ,k ≥ 2 and denote R= F2m[u]/‹ u2λ ›. Let δ,α F2m×. For any odd positive integer n, we give an explicit representation and enumeration for all distinct (δ +α u2)-constacyclic codes over R of length 2kn, and provide a clear formula to count the number of all these codes. In particular, we conclude that every (δ +α u2)-constacyclic code over R of length 2kn is an ideal generated by at most 2 polynomials in the ring R[x]/‹ x2kn-(δ +α u2)›. As an example, we listed all 135 distinct (1+u2)-constacyclic codes of length 4 over F2[u]/‹ u4›, and apply our results to determine all 11 self-dual codes among them. 2020-10-14T08:31:20Z 2020-10-14T08:31:20Z 2020-01-01 Journal 21693536 2-s2.0-85082832767 10.1109/ACCESS.2020.2981453 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082832767&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70464 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Chiang Mai University Library |
collection |
CMU Intellectual Repository |
topic |
Computer Science Engineering Materials Science |
spellingShingle |
Computer Science Engineering Materials Science Yuan Cao Yonglin Cao Hai Q. Dinh Tushar Bag Woraphon Yamaka Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩ |
description |
© 2013 IEEE. Let F2m be a finite field of 2m elements, λ and k be integers satisfying λ,k ≥ 2 and denote R= F2m[u]/‹ u2λ ›. Let δ,α F2m×. For any odd positive integer n, we give an explicit representation and enumeration for all distinct (δ +α u2)-constacyclic codes over R of length 2kn, and provide a clear formula to count the number of all these codes. In particular, we conclude that every (δ +α u2)-constacyclic code over R of length 2kn is an ideal generated by at most 2 polynomials in the ring R[x]/‹ x2kn-(δ +α u2)›. As an example, we listed all 135 distinct (1+u2)-constacyclic codes of length 4 over F2[u]/‹ u4›, and apply our results to determine all 11 self-dual codes among them. |
format |
Journal |
author |
Yuan Cao Yonglin Cao Hai Q. Dinh Tushar Bag Woraphon Yamaka |
author_facet |
Yuan Cao Yonglin Cao Hai Q. Dinh Tushar Bag Woraphon Yamaka |
author_sort |
Yuan Cao |
title |
Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩ |
title_short |
Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩ |
title_full |
Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩ |
title_fullStr |
Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩ |
title_full_unstemmed |
Explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-Constacyclic Codes over F<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩ |
title_sort |
explicit representation and enumeration of repeated-root (δ + αu<sup>2</sup>)-constacyclic codes over f<inf>2</inf><sup>m</sup>[u]/⟨u<sup>2?</sup>⟩ |
publishDate |
2020 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082832767&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70464 |
_version_ |
1681752907465097216 |