Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. The main contribution of this article is to introduce new compact fourth-order, standard fourth-order, and standard second-order finite difference schemes for solving the Kawahara equation, the fifth-order partial derivative equa...

Full description

Saved in:
Bibliographic Details
Main Authors: R. Chousurin, T. Mouktonglang, B. Wongsaijai, K. Poochinapan
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085304093&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/70693
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-70693
record_format dspace
spelling th-cmuir.6653943832-706932020-10-14T08:39:30Z Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation R. Chousurin T. Mouktonglang B. Wongsaijai K. Poochinapan Mathematics © 2020, Springer Science+Business Media, LLC, part of Springer Nature. The main contribution of this article is to introduce new compact fourth-order, standard fourth-order, and standard second-order finite difference schemes for solving the Kawahara equation, the fifth-order partial derivative equation. The conservation of mass only of the numerical solution obtained by the compact fourth-order finite difference scheme is proven. However, the standard fourth-order and standard second-order finite difference schemes can preserve both mass and energy. The stability is also proven by von Neumann analysis. According to analysis for numerical experiments, the order of accuracy for each scheme and the computational efficiency of the compact scheme are presented. To validate the potential of the presented methods, we also consider long-time behavior. Finally, results obtained from the compact scheme are superior than those from the non-compact schemes. 2020-10-14T08:39:30Z 2020-10-14T08:39:30Z 2020-10-01 Journal 15729265 10171398 2-s2.0-85085304093 10.1007/s11075-019-00825-4 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085304093&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70693
institution Chiang Mai University
building Chiang Mai University Library
continent Asia
country Thailand
Thailand
content_provider Chiang Mai University Library
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
R. Chousurin
T. Mouktonglang
B. Wongsaijai
K. Poochinapan
Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation
description © 2020, Springer Science+Business Media, LLC, part of Springer Nature. The main contribution of this article is to introduce new compact fourth-order, standard fourth-order, and standard second-order finite difference schemes for solving the Kawahara equation, the fifth-order partial derivative equation. The conservation of mass only of the numerical solution obtained by the compact fourth-order finite difference scheme is proven. However, the standard fourth-order and standard second-order finite difference schemes can preserve both mass and energy. The stability is also proven by von Neumann analysis. According to analysis for numerical experiments, the order of accuracy for each scheme and the computational efficiency of the compact scheme are presented. To validate the potential of the presented methods, we also consider long-time behavior. Finally, results obtained from the compact scheme are superior than those from the non-compact schemes.
format Journal
author R. Chousurin
T. Mouktonglang
B. Wongsaijai
K. Poochinapan
author_facet R. Chousurin
T. Mouktonglang
B. Wongsaijai
K. Poochinapan
author_sort R. Chousurin
title Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation
title_short Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation
title_full Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation
title_fullStr Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation
title_full_unstemmed Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation
title_sort performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the kawahara equation
publishDate 2020
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085304093&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/70693
_version_ 1681752949105098752