Regularity in semigroups of transformations with invariant sets

Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intr...

Full description

Saved in:
Bibliographic Details
Main Authors: Choomanee W., Honyam P., Sanwong J.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-84882965960&partnerID=40&md5=848afa282e9cf076778df1e23d02556f
http://cmuir.cmu.ac.th/handle/6653943832/7120
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-7120
record_format dspace
spelling th-cmuir.6653943832-71202014-08-30T03:51:36Z Regularity in semigroups of transformations with invariant sets Choomanee W. Honyam P. Sanwong J. Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intra-regular elements of S(X, Y ) and consider the relationships between these elements. Moreover, we count the number of left regular elements of S(X, Y ) when X is a finite set. © 2013 Academic Publications, Ltd. 2014-08-30T03:51:36Z 2014-08-30T03:51:36Z 2013 Article 13118080 10.12732/ijpam.v87i1.9 http://www.scopus.com/inward/record.url?eid=2-s2.0-84882965960&partnerID=40&md5=848afa282e9cf076778df1e23d02556f http://cmuir.cmu.ac.th/handle/6653943832/7120 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description Let T(X) be the semigroup of all transformations on a set X. For a fixed nonempty subset Y of X, let S(X, Y ) = {α ∈ T(X) : Y α ⊆ Y }. Then S(X, Y ) is a semigroup of total transformations on X which leave a subset Y of X invariant. In this paper, we characterize left regular, right regular and intra-regular elements of S(X, Y ) and consider the relationships between these elements. Moreover, we count the number of left regular elements of S(X, Y ) when X is a finite set. © 2013 Academic Publications, Ltd.
format Article
author Choomanee W.
Honyam P.
Sanwong J.
spellingShingle Choomanee W.
Honyam P.
Sanwong J.
Regularity in semigroups of transformations with invariant sets
author_facet Choomanee W.
Honyam P.
Sanwong J.
author_sort Choomanee W.
title Regularity in semigroups of transformations with invariant sets
title_short Regularity in semigroups of transformations with invariant sets
title_full Regularity in semigroups of transformations with invariant sets
title_fullStr Regularity in semigroups of transformations with invariant sets
title_full_unstemmed Regularity in semigroups of transformations with invariant sets
title_sort regularity in semigroups of transformations with invariant sets
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-84882965960&partnerID=40&md5=848afa282e9cf076778df1e23d02556f
http://cmuir.cmu.ac.th/handle/6653943832/7120
_version_ 1681420741273190400