Physical and electrical properties of Nb doped Bi0.5Na0.5[Zr0.59Ti0.41]O3

This research studied the effect of Nb doping on Bi0.5Na0.5[Ti0.41Zr0.59]O3 (when Nb concentration = 0.00, 0.01, 0.03, 0.05, 0.07 and 0.09 mol fraction). Nb doped BNTZ ceramics were fabricated using a conventional mixed-oxide method. All samples were calcined at a temperature of 700 °C for 2 h and s...

全面介紹

Saved in:
書目詳細資料
Main Authors: Rachakom A., Jiansirisomboon S., Watcharapasorn A.
格式: Article
語言:English
出版: 2014
在線閱讀:http://www.scopus.com/inward/record.url?eid=2-s2.0-79957513039&partnerID=40&md5=4bb52106a84090785d0facb322314bcd
http://cmuir.cmu.ac.th/handle/6653943832/7262
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
語言: English
實物特徵
總結:This research studied the effect of Nb doping on Bi0.5Na0.5[Ti0.41Zr0.59]O3 (when Nb concentration = 0.00, 0.01, 0.03, 0.05, 0.07 and 0.09 mol fraction). Nb doped BNTZ ceramics were fabricated using a conventional mixed-oxide method. All samples were calcined at a temperature of 700 °C for 2 h and sintered at a temperature of 900 °C for 2 h. X-ray diffraction patterns suggested that the compounds possessed rhombohedral perovskite structure. SEM micrographs indicated that average grain size decreased as the amount of Nb additives increased. The electrical resistivity showed a decreasing trend with increasing Nb concentration due to excess charge present in the sample. The dielectric constant and dielectric loss of samples showed no particular trend when Nb was added but the optimum was observed when 0.05-0.07 Nb mol fraction was present in BNTZ ceramics. In this study, both microstructure and donor-type effects played an important role in determining electrical resistivity and dielectric properties of these ceramics. © 2011 Elsevier Ltd and Techna Group S.r.l.