การวิเคราะห์เชิงเบส์สำหรับตัวแบบการถดถอยเชิงเส้นเชิงเดียว

วิทยานิพนธ์ (สต.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2542

Saved in:
Bibliographic Details
Main Author: วีรพา ฐานะปรัชญ์
Other Authors: ธีระพร วีระถาวร
Format: Theses and Dissertations
Language:Thai
Published: จุฬาลงกรณ์มหาวิทยาลัย 2009
Subjects:
Online Access:http://cuir.car.chula.ac.th/handle/123456789/11351
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chulalongkorn University
Language: Thai
id th-cuir.11351
record_format dspace
institution Chulalongkorn University
building Chulalongkorn University Library
country Thailand
collection Chulalongkorn University Intellectual Repository
language Thai
topic วิธีกำลังสองน้อยที่สุด
การวิเคราะห์การถดถอย
การวิเคราะห์เชิงเบส์
spellingShingle วิธีกำลังสองน้อยที่สุด
การวิเคราะห์การถดถอย
การวิเคราะห์เชิงเบส์
วีรพา ฐานะปรัชญ์
การวิเคราะห์เชิงเบส์สำหรับตัวแบบการถดถอยเชิงเส้นเชิงเดียว
description วิทยานิพนธ์ (สต.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2542
author2 ธีระพร วีระถาวร
author_facet ธีระพร วีระถาวร
วีรพา ฐานะปรัชญ์
format Theses and Dissertations
author วีรพา ฐานะปรัชญ์
author_sort วีรพา ฐานะปรัชญ์
title การวิเคราะห์เชิงเบส์สำหรับตัวแบบการถดถอยเชิงเส้นเชิงเดียว
title_short การวิเคราะห์เชิงเบส์สำหรับตัวแบบการถดถอยเชิงเส้นเชิงเดียว
title_full การวิเคราะห์เชิงเบส์สำหรับตัวแบบการถดถอยเชิงเส้นเชิงเดียว
title_fullStr การวิเคราะห์เชิงเบส์สำหรับตัวแบบการถดถอยเชิงเส้นเชิงเดียว
title_full_unstemmed การวิเคราะห์เชิงเบส์สำหรับตัวแบบการถดถอยเชิงเส้นเชิงเดียว
title_sort การวิเคราะห์เชิงเบส์สำหรับตัวแบบการถดถอยเชิงเส้นเชิงเดียว
publisher จุฬาลงกรณ์มหาวิทยาลัย
publishDate 2009
url http://cuir.car.chula.ac.th/handle/123456789/11351
_version_ 1681410814053974016
spelling th-cuir.113512009-09-28T09:12:49Z การวิเคราะห์เชิงเบส์สำหรับตัวแบบการถดถอยเชิงเส้นเชิงเดียว Bayesian analysis for simple linear regression model วีรพา ฐานะปรัชญ์ ธีระพร วีระถาวร จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยศาสตร์และการบัญชี วิธีกำลังสองน้อยที่สุด การวิเคราะห์การถดถอย การวิเคราะห์เชิงเบส์ วิทยานิพนธ์ (สต.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2542 เปรียบเทียบค่าประมาณสัมประสิทธิ์การถดถอย ของตัวแบบการถดถอยเชิงเส้นเชิงเดียวจาก 4 วิธี คือ วิธีกำลังสองน้อยสุด (OLS) วิธีเชิงเบส์เมื่อใช้การแจกแจงก่อนที่ไม่ให้ข้อมูล (UNI) วิธีเชิงเบส์เมื่อใช้การแจกแจงก่อนที่ให้ข้อมูล (NOR) และวิธีเชิงเบส์เมื่อใช้การแจกแจงก่อนของเจฟฟรีส์ (JEF) เกณฑ์ที่ใช้ในการตัดสินใจ คือ ค่าเฉลี่ยความคลาดเคลื่อนกำลังสอง (AMSE) และศึกษาวิธี NOR ในกรณีการหาค่า Z ที่เหมาะสมซึ่งทำให้วิธี NOR มีประสิทธิภาพใกล้เคียงกับวิธี OLS และ UNI มากที่สุด โดยที่ค่า Z เป็นค่าที่ทำให้ค่าเฉลี่ยก่อน (prior mean) เบี่ยงเบนจากค่าสัมประสิทธิ์การถดถอย Z เท่าของส่วนเบี่ยงเบนมาตรฐานก่อน (prior standard deviation) ซึ่งวัตถุประสงค์ทั้งสองประการดังกล่าว จะศึกษาเมื่อขนาดตัวอย่างเท่ากับ 10 30 50 และ 100 ความคลาดเคลื่อนมีการแจกแจงปกติซึ่งมีค่าเฉลี่ยเท่ากับ 0 ส่วนเบี่ยงเบนมาตรฐานเท่ากับ 0.1 0.3 0.5 0.7 และ 0.9 ตัวแปรอิสระเป็นค่าคงที่ซึ่งสุ่มมาจากการแจกแจงปกติ ด้วยค่าเฉลี่ยเท่ากับ 1 ส่วนเบี่ยงเบนมาตรฐานเท่ากับ 0.1 0.15 0.2 0.25 0.3 0.5 0.7 และ 0.9 (เปอร์เซ็นต์ของสัมประสิทธิ์ความแปรผัน (CV(X)) เท่ากับ 10% 15% 20% 25% 30% 50% 70% และ 90% ตามลำดับ) ข้อมูลที่ใช้ในการวิจัยได้จากการจำลองด้วยเทคนิคมอนติคาร์โล ซึ่งกระทำซ้ำ 500 ครั้งในแต่ละสถานการณ์ จากการพิสูจน์ทางพีชคณิตแสดงให้เห็นว่าการแจกแจงภายหลัง (posterior distribution) ที่ได้จากวิธีเชิงเบส์เมื่อใช้จากแจกแจงก่อนของเจฟฟรีส์ (Jeffreys's prior distribution) เหมือนกันกับการแจกแจงภายหลังที่ได้จากวิธีเชิงเบส์ เมื่อใช้การแจกแจงก่อนที่ไม่ให้ข้อมูล (noninformative prior distribution) ดังนั้น ผู้วิจัยจึงเปรียบเทียบค่าประมาณสัมประสิทธิ์การถดถอยของ 3 วิธี คือ วิธี OLS วิธี UNI และวิธี NOR ผลการวิจัยจากวัตถุประสงค์ประการแรกพบว่า วิธี OLS และวิธี UNI มีประสิทธิภาพใกล้เคียงกัน โดยที่วิธี OLS จะมีประสิทธิภาพดีกว่าวิธี UNI เสมอ ซึ่งวิธี OLS มีประสิทธิภาพดีเมื่อ CV(X) มีค่าสูง ส่วนเบี่ยงเบนมาตรฐานของตัวแปรตามมีค่าต่ำและขนาดตัวอย่างสูง ส่วนวิธี NOR มีประสิทธิภาพดีเมื่อ CV(X) มีค่าต่ำ ส่วนเบี่ยงเบนมาตรฐานของตัวแปรตามมีค่าสูงและขนาดตัวอย่างต่ำ โดยประสิทธิภาพของตัวประมาณสัมประสิทธิ์การถดถอยของทั้งสามวิธี มีแนวโน้มเพิ่มขึ้นเมื่อ CV(X) และขนาดตัวอย่างเพิ่มขึ้น และมีแนวโน้มลดลงเมื่อส่วนเบี่ยงเบนมาตรฐานของตัวแปรตามเพิ่มขึ้น ผลการวิจัยจากวัตถุประสงค์ประการที่สองพบว่า ค่า Z ที่เหมาะสมแปรผันตามส่วนเบี่ยงเบนมาตรฐานของตัวแปรตาม แต่แปรผกผันกับ CV(X) และขนาดตัวอย่าง วิธี NOR มีแนวโน้มดีกว่าวิธี OLS และ UNI เมื่อค่า Z ที่เหมาะสมมีแนวโน้มเพิ่มขึ้น แต่วิธี NOR มีแนวโน้มไม่ดีกว่าวิธี OLS และ UNI เมื่อค่า Z ที่เหมาะสมมีแนวโน้มลดลง To compare four methods for estimating the regression coefficients of the simple linear regression model : Least Square method (OLS), Bayesian method using noninformative prior (UNI), Bayesian method using informative prior (NOR) and Bayesian method using Jeffreys's prior (JEF). The criterion of comparison is the ratio of the average value of the mean square error (AMSE). And to study the NOR method in searching for the optimum z-value and whether the NOR method has the nearest efficiency to OLS and UNI where z-value is the value that makes prior mean deviate z-fold of prior standard deviation from the regression coefficient. Both of the objectives have studied sample sizes of 10, 30, 50 and 100. The parameters of the research has been the residuals of a normal distribution with a mean of 0, a standard deviation of 0.1, 0.3, 0.5, 0.7 and 0.9 and the independent variable is a scalar drawn from a normal distribution with a mean of 1, a standard deviation of 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.7 and 0.9 (percentage of coefficients of variation (CV(X)) are equal to 10%, 15%, 20%, 25%, 30%, 50%, 70% and 90% respectively). The data has been obtained through simulation using Monte Carlo technique and repeated 500 times for each case. By algebraic proof, this shows that the posterior distribution by using Jeffreys's prior distribution has the same distribution as the posterior distribution by using a noninformative prior distribution, so the researcher has compared the regression coefficient estimate of three methods: OLS, UNI and NOR. The results of the first objective are that OLS has a nearer efficiency with UNI while OLS always has a greater efficiency than UNI. OLS is efficient when CV(X) is high, the standard deviation of the dependent variable is low, and the sample size is large. NOR is efficient when CV(X) is low, the standard deviation of the dependent variable is high, and the sample size is small. The efficiency of all regression coefficient estimates increased when CV(X) and the sample size increased. However the efficiency decreased when the standard deviation of the dependent variable increased. The results of the second objective are that the optimum z-value follows the standard deviation of the dependent variable, whereas it is in converse to CV(X) and the sample size. NOR is better than OLS and UNI when the optimum z-value increases buy NOR is worse than OLS and UNI when the optimum z-value decreases. 2009-09-28T09:12:48Z 2009-09-28T09:12:48Z 2542 Thesis 9743340785 http://cuir.car.chula.ac.th/handle/123456789/11351 th จุฬาลงกรณ์มหาวิทยาลัย 856321 bytes 843302 bytes 819760 bytes 766708 bytes 3089770 bytes 796927 bytes 1123508 bytes application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf จุฬาลงกรณ์มหาวิทยาลัย