Thai handwritten character recognition using heuristic rules hybrid with neural network

This research enhanced two major processes of the previous work of the off-line Thai handwritten character recognition using hybrid techniques of heuristic rules and neural network system. The proposed functions are mainly in 1) Feature extraction enhancement to improve the feature conflict resoluti...

Full description

Saved in:
Bibliographic Details
Main Authors: Jarernsri L. Mitrpanont, Yingyot Imprasert
Other Authors: Mahidol University
Format: Conference or Workshop Item
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/11781
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:This research enhanced two major processes of the previous work of the off-line Thai handwritten character recognition using hybrid techniques of heuristic rules and neural network system. The proposed functions are mainly in 1) Feature extraction enhancement to improve the feature conflict resolution rule and the specialized neural network-based zigzag feature extraction. These functions are used to refine the conflict features and zigzag patterns; 2) Neural network-based recognition. Specifically, a neural network technique improves the capabilities of the recognition process to handle various styles of writing. The result showed that the additional feature conflict resolution rule could achieve the feature extraction rate of 87.85% (increased 2.13%), the feature extraction rate of the specialized neural network-based zigzag extraction could achieve 90.48% (increased 47.9%) and the recognition rate of the neural network-based recognition which combine both of the two proposed feature extraction functions could achieve 92.78% (increased 9.77%). © 2011 IEEE.