Multiple flare-angle horn feeds for sub-mm astronomy and cosmic microwave background experiments
Context. The use of large-format focal plane imaging arrays employing multiple feed horns is becoming increasingly important for the next generation of single dish sub-mm telescopes and cosmology experiments. Such receivers are being commissioned on both general purpose, common user telescopes and t...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2018
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/11842 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.11842 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.118422018-05-03T15:44:02Z Multiple flare-angle horn feeds for sub-mm astronomy and cosmic microwave background experiments J. Leech B. K. Tan G. Yassin P. Kittara S. Wangsuya J. Treuttel M. Henry M. L. Oldfield P. G. Huggard University of Oxford Mahidol University Rutherford Appleton Laboratory LERMA - Laboratoire d'Etudes du Rayonnement et de la Matiere en Astrophysique et Atmospheres Earth and Planetary Sciences Physics and Astronomy Context. The use of large-format focal plane imaging arrays employing multiple feed horns is becoming increasingly important for the next generation of single dish sub-mm telescopes and cosmology experiments. Such receivers are being commissioned on both general purpose, common user telescopes and telescopes specifically designed for mapping intensity and polarisation anisotropies in the cosmic microwave background (CMB). Telescopes are currently being constructed to map the CMB polarisation that employ hundreds of feeds and the cost of manufacturing these feeds has become a significant fraction of the total cost of the telescope. Aims. We have developed and manufactured low-cost easy-to-machine smooth-walled horns that have a performance comparable to the more traditional corrugated feed horns that are often used in focal plane arrays. Our horns are much easier to fabricate than corrugated horns enabling the rapid construction of arrays with a large number of horns at a very low cost. Methods. Our smooth walled horns use multiple changes in flare angle to excite higher order waveguide modes. They are designed using a genetic algorithm to optimise the positions and magnitudes of these flare angle discontinuities. We have developed a fully parallelised software suite for the optimisation of these horns. We have manufactured prototype horns by traditional electroforming and also by a new direct drilling technique and we have measured their beam patterns using a far-field antenna test range at 230 GHz. Results. We present simulated and measured far-field beam patterns for one of our horn designs. They exhibit low sidelobe levels, good beam circularity and low cross-polarisation levels over a fractional bandwidth of 20%. These results offer experimental confirmation of our design technique, allowing us to proceed confidently in the optimisation of horns with a wider operational bandwidth. The results also show that the new manufacturing technique using drilling is successful, enabling the fabrication of large format arrays by repeatedly drilling into a single aluminium plate. This will enable the construction of focal plane arrays at a very low cost per horn. Conclusions. We have developed a new type of high performance feed horn that is fast and easy to fabricate. Having demonstrated the efficacy of our horn designs experimentally, we are building and testing a prototype focal plane array of 37 hexagonally close packed horns. This prototype array will be an important step towards building a complete CMB mapping receiver using these feed horns. © 2011 ESO. 2018-05-03T08:10:21Z 2018-05-03T08:10:21Z 2011-07-28 Article Astronomy and Astrophysics. Vol.532, (2011) 10.1051/0004-6361/201117124 14320746 00046361 2-s2.0-79960665642 https://repository.li.mahidol.ac.th/handle/123456789/11842 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79960665642&origin=inward |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Earth and Planetary Sciences Physics and Astronomy |
spellingShingle |
Earth and Planetary Sciences Physics and Astronomy J. Leech B. K. Tan G. Yassin P. Kittara S. Wangsuya J. Treuttel M. Henry M. L. Oldfield P. G. Huggard Multiple flare-angle horn feeds for sub-mm astronomy and cosmic microwave background experiments |
description |
Context. The use of large-format focal plane imaging arrays employing multiple feed horns is becoming increasingly important for the next generation of single dish sub-mm telescopes and cosmology experiments. Such receivers are being commissioned on both general purpose, common user telescopes and telescopes specifically designed for mapping intensity and polarisation anisotropies in the cosmic microwave background (CMB). Telescopes are currently being constructed to map the CMB polarisation that employ hundreds of feeds and the cost of manufacturing these feeds has become a significant fraction of the total cost of the telescope. Aims. We have developed and manufactured low-cost easy-to-machine smooth-walled horns that have a performance comparable to the more traditional corrugated feed horns that are often used in focal plane arrays. Our horns are much easier to fabricate than corrugated horns enabling the rapid construction of arrays with a large number of horns at a very low cost. Methods. Our smooth walled horns use multiple changes in flare angle to excite higher order waveguide modes. They are designed using a genetic algorithm to optimise the positions and magnitudes of these flare angle discontinuities. We have developed a fully parallelised software suite for the optimisation of these horns. We have manufactured prototype horns by traditional electroforming and also by a new direct drilling technique and we have measured their beam patterns using a far-field antenna test range at 230 GHz. Results. We present simulated and measured far-field beam patterns for one of our horn designs. They exhibit low sidelobe levels, good beam circularity and low cross-polarisation levels over a fractional bandwidth of 20%. These results offer experimental confirmation of our design technique, allowing us to proceed confidently in the optimisation of horns with a wider operational bandwidth. The results also show that the new manufacturing technique using drilling is successful, enabling the fabrication of large format arrays by repeatedly drilling into a single aluminium plate. This will enable the construction of focal plane arrays at a very low cost per horn. Conclusions. We have developed a new type of high performance feed horn that is fast and easy to fabricate. Having demonstrated the efficacy of our horn designs experimentally, we are building and testing a prototype focal plane array of 37 hexagonally close packed horns. This prototype array will be an important step towards building a complete CMB mapping receiver using these feed horns. © 2011 ESO. |
author2 |
University of Oxford |
author_facet |
University of Oxford J. Leech B. K. Tan G. Yassin P. Kittara S. Wangsuya J. Treuttel M. Henry M. L. Oldfield P. G. Huggard |
format |
Article |
author |
J. Leech B. K. Tan G. Yassin P. Kittara S. Wangsuya J. Treuttel M. Henry M. L. Oldfield P. G. Huggard |
author_sort |
J. Leech |
title |
Multiple flare-angle horn feeds for sub-mm astronomy and cosmic microwave background experiments |
title_short |
Multiple flare-angle horn feeds for sub-mm astronomy and cosmic microwave background experiments |
title_full |
Multiple flare-angle horn feeds for sub-mm astronomy and cosmic microwave background experiments |
title_fullStr |
Multiple flare-angle horn feeds for sub-mm astronomy and cosmic microwave background experiments |
title_full_unstemmed |
Multiple flare-angle horn feeds for sub-mm astronomy and cosmic microwave background experiments |
title_sort |
multiple flare-angle horn feeds for sub-mm astronomy and cosmic microwave background experiments |
publishDate |
2018 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/11842 |
_version_ |
1763492747221663744 |