Meshless methods for a simple atmospheric model
In this paper, two meshless methods, the "Smoothed Particle Hydrodynamics (SPH)", the "Meshless Local Petrov-Galerkin (MLPG)" and the classical upwind finite difference method (FDM) are applied to a linear one space dimension advection equation with specified periodic boundary co...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
منشور في: |
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://repository.li.mahidol.ac.th/handle/123456789/14393 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Mahidol University |
الملخص: | In this paper, two meshless methods, the "Smoothed Particle Hydrodynamics (SPH)", the "Meshless Local Petrov-Galerkin (MLPG)" and the classical upwind finite difference method (FDM) are applied to a linear one space dimension advection equation with specified periodic boundary condition. In SPH, a cubic spline weight function is used to determine the advection field at the nodes in the support domain. For MLPG method, the weight residual is confined to a very small local sub-domain. The numerical integrations are carried out over a local quadrature domain defined for the node, which can also be the local domain where the test (weight) function is defined. The results from three methods are compared with the corresponding exact solutions. |
---|