Parameter identification for pandemic influenza SEIQR model

© 2008 Global Information Publisher (H.K) Co., Limited. All rights reserved. In this paper, we study the identification of model parameters for the pandemic influenza susceptibleexposed- infected-quarantine-recovered (SEIQR) model using the differential evolution (DE) algorithm. From a given set of...

Full description

Saved in:
Bibliographic Details
Main Authors: W. Jumpen, B. Wiwatanapataphee, Y. H. Wu, I. M. Tang
Other Authors: Mahidol University
Format: Conference or Workshop Item
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/19147
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.19147
record_format dspace
spelling th-mahidol.191472018-07-12T09:24:47Z Parameter identification for pandemic influenza SEIQR model W. Jumpen B. Wiwatanapataphee Y. H. Wu I. M. Tang Mahidol University Curtin University Computer Science © 2008 Global Information Publisher (H.K) Co., Limited. All rights reserved. In this paper, we study the identification of model parameters for the pandemic influenza susceptibleexposed- infected-quarantine-recovered (SEIQR) model using the differential evolution (DE) algorithm. From a given set of the measured data, say from the first outbreak, all parameters used in the model can be determined by the algorithm. We have also shown from numerical investigation that the DE algorithm converges to parameter values for different initial guesses. With the parameter property determined, the model can then be used to capture the behavior of the next outbreaks of the disease. The work provides an effective tool for predicting the spread of the disease. 2018-07-12T02:24:47Z 2018-07-12T02:24:47Z 2008-01-01 Conference Paper Advances in Applied Computing and Computational Sciences - Proceedings of International Symposium on Applied Computing and Computational Sciences, ACCS 2008. (2008), 132-137 2-s2.0-84945930983 https://repository.li.mahidol.ac.th/handle/123456789/19147 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84945930983&origin=inward
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Computer Science
spellingShingle Computer Science
W. Jumpen
B. Wiwatanapataphee
Y. H. Wu
I. M. Tang
Parameter identification for pandemic influenza SEIQR model
description © 2008 Global Information Publisher (H.K) Co., Limited. All rights reserved. In this paper, we study the identification of model parameters for the pandemic influenza susceptibleexposed- infected-quarantine-recovered (SEIQR) model using the differential evolution (DE) algorithm. From a given set of the measured data, say from the first outbreak, all parameters used in the model can be determined by the algorithm. We have also shown from numerical investigation that the DE algorithm converges to parameter values for different initial guesses. With the parameter property determined, the model can then be used to capture the behavior of the next outbreaks of the disease. The work provides an effective tool for predicting the spread of the disease.
author2 Mahidol University
author_facet Mahidol University
W. Jumpen
B. Wiwatanapataphee
Y. H. Wu
I. M. Tang
format Conference or Workshop Item
author W. Jumpen
B. Wiwatanapataphee
Y. H. Wu
I. M. Tang
author_sort W. Jumpen
title Parameter identification for pandemic influenza SEIQR model
title_short Parameter identification for pandemic influenza SEIQR model
title_full Parameter identification for pandemic influenza SEIQR model
title_fullStr Parameter identification for pandemic influenza SEIQR model
title_full_unstemmed Parameter identification for pandemic influenza SEIQR model
title_sort parameter identification for pandemic influenza seiqr model
publishDate 2018
url https://repository.li.mahidol.ac.th/handle/123456789/19147
_version_ 1763487596160221184