Parameter identification for pandemic influenza SEIQR model
© 2008 Global Information Publisher (H.K) Co., Limited. All rights reserved. In this paper, we study the identification of model parameters for the pandemic influenza susceptibleexposed- infected-quarantine-recovered (SEIQR) model using the differential evolution (DE) algorithm. From a given set of...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Published: |
2018
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/19147 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.19147 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.191472018-07-12T09:24:47Z Parameter identification for pandemic influenza SEIQR model W. Jumpen B. Wiwatanapataphee Y. H. Wu I. M. Tang Mahidol University Curtin University Computer Science © 2008 Global Information Publisher (H.K) Co., Limited. All rights reserved. In this paper, we study the identification of model parameters for the pandemic influenza susceptibleexposed- infected-quarantine-recovered (SEIQR) model using the differential evolution (DE) algorithm. From a given set of the measured data, say from the first outbreak, all parameters used in the model can be determined by the algorithm. We have also shown from numerical investigation that the DE algorithm converges to parameter values for different initial guesses. With the parameter property determined, the model can then be used to capture the behavior of the next outbreaks of the disease. The work provides an effective tool for predicting the spread of the disease. 2018-07-12T02:24:47Z 2018-07-12T02:24:47Z 2008-01-01 Conference Paper Advances in Applied Computing and Computational Sciences - Proceedings of International Symposium on Applied Computing and Computational Sciences, ACCS 2008. (2008), 132-137 2-s2.0-84945930983 https://repository.li.mahidol.ac.th/handle/123456789/19147 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84945930983&origin=inward |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Computer Science |
spellingShingle |
Computer Science W. Jumpen B. Wiwatanapataphee Y. H. Wu I. M. Tang Parameter identification for pandemic influenza SEIQR model |
description |
© 2008 Global Information Publisher (H.K) Co., Limited. All rights reserved. In this paper, we study the identification of model parameters for the pandemic influenza susceptibleexposed- infected-quarantine-recovered (SEIQR) model using the differential evolution (DE) algorithm. From a given set of the measured data, say from the first outbreak, all parameters used in the model can be determined by the algorithm. We have also shown from numerical investigation that the DE algorithm converges to parameter values for different initial guesses. With the parameter property determined, the model can then be used to capture the behavior of the next outbreaks of the disease. The work provides an effective tool for predicting the spread of the disease. |
author2 |
Mahidol University |
author_facet |
Mahidol University W. Jumpen B. Wiwatanapataphee Y. H. Wu I. M. Tang |
format |
Conference or Workshop Item |
author |
W. Jumpen B. Wiwatanapataphee Y. H. Wu I. M. Tang |
author_sort |
W. Jumpen |
title |
Parameter identification for pandemic influenza SEIQR model |
title_short |
Parameter identification for pandemic influenza SEIQR model |
title_full |
Parameter identification for pandemic influenza SEIQR model |
title_fullStr |
Parameter identification for pandemic influenza SEIQR model |
title_full_unstemmed |
Parameter identification for pandemic influenza SEIQR model |
title_sort |
parameter identification for pandemic influenza seiqr model |
publishDate |
2018 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/19147 |
_version_ |
1763487596160221184 |