Superconvergence of iterated numerical solutions using wavelets
In this paper, we examine the superconvergence property of iterates of numerical solutions to both Fredholm integral equations of the second kind and to nonlinear Hammerstein equations. The iterates are obtained by applying a class of multiwavelets developed by Alpert.
Saved in:
Main Authors: | Supot Seebut, Boriboon Novaprateep |
---|---|
其他作者: | Mahidol University |
格式: | Article |
出版: |
2018
|
主題: | |
在線閱讀: | https://repository.li.mahidol.ac.th/handle/123456789/19929 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Mahidol University |
相似書籍
-
Wavelet collocation method and multilevel augmentation method for hammerstein equations
由: Hideaki Kaneko, et al.
出版: (2018) -
Superconvergence of Jacobi Gauss type spectral interpolation
由: Wang, Li-Lian, et al.
出版: (2014) -
Superconvergence of linear finite elements on simplicial meshes
由: Chen, Jie
出版: (2012) -
Numerical solution of differential equation : wavelet applications
由: Narongpol Wichailukkana
出版: (2023) -
Pointwise error estimates and local superconvergence of Jacobi expansions
由: Xiang, Shuhuang, et al.
出版: (2023)