A simple prediction rule and a neural network model to predict pancreatic beta-cell reserve in young adults with diabetes mellitus

In the present study we developed and assessed the performance of a simple prediction rule and a neural network model to predict beta-cell reserve in young adults with diabetes. Eighty three young adults with diabetes were included in the study. All were less than 40 years old and without apparent s...

Full description

Saved in:
Bibliographic Details
Main Authors: Sriurai Thamprajamchit, Sirinate Krittiyawong, Pongamorn Bunnag, Gobchai Puavilai, Boonsong Ongphiphadhanakul, Suwannee Chanprasertyothin, Rajata Rajatanavin
Other Authors: Mahidol University
Format: Article
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/26827
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
Description
Summary:In the present study we developed and assessed the performance of a simple prediction rule and a neural network model to predict beta-cell reserve in young adults with diabetes. Eighty three young adults with diabetes were included in the study. All were less than 40 years old and without apparent secondary causes of diabetes. The subjects were randomly allocated to 2 groups; group 1 (n = 59) for developing a prediction rule and training a neural network, group 2 (n = 24) for validation purpose. The prediction rule was developed by using stepwise logistic regression. Using stepwise logistic regression and modification of the derived equation, the patient would be insulin deficient if 3(waist circumference in cm) + 4(age at diagnosis) < 340 in the absence of previous diabetic ketoacidosis (DKA) or < 400 in the presence of previous DKA. When tested in the validation set, the prediction rule had positive and negative predictive values of 86.7 per cent and 77.8 per cent respectively with 83.3 per cent accuracy while the ANN model had a positive predictive value of 88.2 per cent and a negative predictive value of 100 per cent with 91.7 per cent accuracy. When testing the performance of the prediction rule and the ANN model compared to the assessment of 23 internists in a subgroup of 9 diabetics whose age at onset was less than 30 years and without a history of DKA, the ANN had the highest ability to predict beta-cell reserve (accuracy = 88.9), followed by the prediction rule (accuracy = 77.8%) and assessments by internists (accuracy = 60.9%). We concluded that beta-cell reserve in young adults with diabetes mellitus could be predicted by a simple prediction rule or a neural network model. The prediction rule and the neural network model can be helpful clinically in patients with mixed clinical features of type 1 and type 2 diabetes.