A SEIQR model for pandemic influenza and its parameter identification
In this paper, we first propose a pandemic influenza susceptib-leexposed- infected-quarantined-recovered (SEIQR) model and analyze the model properties. We then introduce a differential evolution (DE) algorithm for determining the numerical values of the parameters in the model. For a given set of m...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2018
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/27769 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.27769 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.277692018-09-13T13:47:35Z A SEIQR model for pandemic influenza and its parameter identification W. Jumpen B. Wiwatanapataphee Y. H. Wu I. M. Tang Mahidol University Curtin University Mathematics In this paper, we first propose a pandemic influenza susceptib-leexposed- infected-quarantined-recovered (SEIQR) model and analyze the model properties. We then introduce a differential evolution (DE) algorithm for determining the numerical values of the parameters in the model. For a given set of measured data, e.g. from the first outbreak, all the values of the model parameters can be determined by the algorithm. We have also shown from numerical simulations that the DE algorithm yields the same parameter values for different sets of initial guesses. With the values of the parameters determined, the model can then be used to capture the behavior of the next outbreaks of the disease. The work provides an effective tool for predicting the spread of the disease. © 2009 Academic Publications. 2018-09-13T06:47:35Z 2018-09-13T06:47:35Z 2009-12-01 Article International Journal of Pure and Applied Mathematics. Vol.52, No.2 (2009), 247-265 13118080 2-s2.0-78649786131 https://repository.li.mahidol.ac.th/handle/123456789/27769 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78649786131&origin=inward |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Mathematics |
spellingShingle |
Mathematics W. Jumpen B. Wiwatanapataphee Y. H. Wu I. M. Tang A SEIQR model for pandemic influenza and its parameter identification |
description |
In this paper, we first propose a pandemic influenza susceptib-leexposed- infected-quarantined-recovered (SEIQR) model and analyze the model properties. We then introduce a differential evolution (DE) algorithm for determining the numerical values of the parameters in the model. For a given set of measured data, e.g. from the first outbreak, all the values of the model parameters can be determined by the algorithm. We have also shown from numerical simulations that the DE algorithm yields the same parameter values for different sets of initial guesses. With the values of the parameters determined, the model can then be used to capture the behavior of the next outbreaks of the disease. The work provides an effective tool for predicting the spread of the disease. © 2009 Academic Publications. |
author2 |
Mahidol University |
author_facet |
Mahidol University W. Jumpen B. Wiwatanapataphee Y. H. Wu I. M. Tang |
format |
Article |
author |
W. Jumpen B. Wiwatanapataphee Y. H. Wu I. M. Tang |
author_sort |
W. Jumpen |
title |
A SEIQR model for pandemic influenza and its parameter identification |
title_short |
A SEIQR model for pandemic influenza and its parameter identification |
title_full |
A SEIQR model for pandemic influenza and its parameter identification |
title_fullStr |
A SEIQR model for pandemic influenza and its parameter identification |
title_full_unstemmed |
A SEIQR model for pandemic influenza and its parameter identification |
title_sort |
seiqr model for pandemic influenza and its parameter identification |
publishDate |
2018 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/27769 |
_version_ |
1763496895809847296 |