A SEIQR model for pandemic influenza and its parameter identification

In this paper, we first propose a pandemic influenza susceptib-leexposed- infected-quarantined-recovered (SEIQR) model and analyze the model properties. We then introduce a differential evolution (DE) algorithm for determining the numerical values of the parameters in the model. For a given set of m...

Full description

Saved in:
Bibliographic Details
Main Authors: W. Jumpen, B. Wiwatanapataphee, Y. H. Wu, I. M. Tang
Other Authors: Mahidol University
Format: Article
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/27769
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.27769
record_format dspace
spelling th-mahidol.277692018-09-13T13:47:35Z A SEIQR model for pandemic influenza and its parameter identification W. Jumpen B. Wiwatanapataphee Y. H. Wu I. M. Tang Mahidol University Curtin University Mathematics In this paper, we first propose a pandemic influenza susceptib-leexposed- infected-quarantined-recovered (SEIQR) model and analyze the model properties. We then introduce a differential evolution (DE) algorithm for determining the numerical values of the parameters in the model. For a given set of measured data, e.g. from the first outbreak, all the values of the model parameters can be determined by the algorithm. We have also shown from numerical simulations that the DE algorithm yields the same parameter values for different sets of initial guesses. With the values of the parameters determined, the model can then be used to capture the behavior of the next outbreaks of the disease. The work provides an effective tool for predicting the spread of the disease. © 2009 Academic Publications. 2018-09-13T06:47:35Z 2018-09-13T06:47:35Z 2009-12-01 Article International Journal of Pure and Applied Mathematics. Vol.52, No.2 (2009), 247-265 13118080 2-s2.0-78649786131 https://repository.li.mahidol.ac.th/handle/123456789/27769 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=78649786131&origin=inward
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Mathematics
spellingShingle Mathematics
W. Jumpen
B. Wiwatanapataphee
Y. H. Wu
I. M. Tang
A SEIQR model for pandemic influenza and its parameter identification
description In this paper, we first propose a pandemic influenza susceptib-leexposed- infected-quarantined-recovered (SEIQR) model and analyze the model properties. We then introduce a differential evolution (DE) algorithm for determining the numerical values of the parameters in the model. For a given set of measured data, e.g. from the first outbreak, all the values of the model parameters can be determined by the algorithm. We have also shown from numerical simulations that the DE algorithm yields the same parameter values for different sets of initial guesses. With the values of the parameters determined, the model can then be used to capture the behavior of the next outbreaks of the disease. The work provides an effective tool for predicting the spread of the disease. © 2009 Academic Publications.
author2 Mahidol University
author_facet Mahidol University
W. Jumpen
B. Wiwatanapataphee
Y. H. Wu
I. M. Tang
format Article
author W. Jumpen
B. Wiwatanapataphee
Y. H. Wu
I. M. Tang
author_sort W. Jumpen
title A SEIQR model for pandemic influenza and its parameter identification
title_short A SEIQR model for pandemic influenza and its parameter identification
title_full A SEIQR model for pandemic influenza and its parameter identification
title_fullStr A SEIQR model for pandemic influenza and its parameter identification
title_full_unstemmed A SEIQR model for pandemic influenza and its parameter identification
title_sort seiqr model for pandemic influenza and its parameter identification
publishDate 2018
url https://repository.li.mahidol.ac.th/handle/123456789/27769
_version_ 1763496895809847296