High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ<sup>5</sup>-elongase gene
Adrenic acid (ADA), an ω-6 polyunsaturated fatty acid (PUFA), has attracted much interest due to its pharmaceutical potential. Exploiting the wealth of information currently available on in planta oil biosynthesis, and coupling this information with the tool of genetic engineering, it is now feasibl...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2018
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/28896 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.28896 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.288962018-09-24T16:02:25Z High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ<sup>5</sup>-elongase gene Songsri Kaewsuwan Nantavan Bunyapraphatsara David J. Cove Ralph S. Quatrano Pichit Chodok Faculty of Pharmaceutical Sciences Mahidol University Washington University in St. Louis Chemical Engineering Environmental Science Adrenic acid (ADA), an ω-6 polyunsaturated fatty acid (PUFA), has attracted much interest due to its pharmaceutical potential. Exploiting the wealth of information currently available on in planta oil biosynthesis, and coupling this information with the tool of genetic engineering, it is now feasible to deliberately alter fatty acid biosynthetic pathways to generate unique oils in commodity crops. In this study, a Δ5-elongase gene from the algae Pavlova sp. related to the biosynthesis of C22PUFAs was targeted to enable production of ADA in the moss Physcomitrella patens. Heterologous expression of this gene was under the control of a tandemly duplicate 35S promoter. It was established that ADA (0.42 mg/l) was synthesized in P. patens from endogenous arachidonic acid (ARA) via the expressed Pavlova sp. Δ5-elongase in the moss. In an attempt to maximize ADA production, medium optimization was effected by the response surface methodology (RSM), resulting in a significant elevation of ADA (4.51 mg/l) production under optimum conditions. To the best of our knowledge, this is the first study describing the expression of a PUFA synthesizing enzyme in non-seed lower plant without supplying the exogenous fatty acid. © 2010 Elsevier Ltd. All rights reserved. 2018-09-24T08:51:44Z 2018-09-24T08:51:44Z 2010-06-01 Article Bioresource Technology. Vol.101, No.11 (2010), 4081-4088 10.1016/j.biortech.2009.12.138 09608524 2-s2.0-76749121331 https://repository.li.mahidol.ac.th/handle/123456789/28896 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=76749121331&origin=inward |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Chemical Engineering Environmental Science |
spellingShingle |
Chemical Engineering Environmental Science Songsri Kaewsuwan Nantavan Bunyapraphatsara David J. Cove Ralph S. Quatrano Pichit Chodok High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ<sup>5</sup>-elongase gene |
description |
Adrenic acid (ADA), an ω-6 polyunsaturated fatty acid (PUFA), has attracted much interest due to its pharmaceutical potential. Exploiting the wealth of information currently available on in planta oil biosynthesis, and coupling this information with the tool of genetic engineering, it is now feasible to deliberately alter fatty acid biosynthetic pathways to generate unique oils in commodity crops. In this study, a Δ5-elongase gene from the algae Pavlova sp. related to the biosynthesis of C22PUFAs was targeted to enable production of ADA in the moss Physcomitrella patens. Heterologous expression of this gene was under the control of a tandemly duplicate 35S promoter. It was established that ADA (0.42 mg/l) was synthesized in P. patens from endogenous arachidonic acid (ARA) via the expressed Pavlova sp. Δ5-elongase in the moss. In an attempt to maximize ADA production, medium optimization was effected by the response surface methodology (RSM), resulting in a significant elevation of ADA (4.51 mg/l) production under optimum conditions. To the best of our knowledge, this is the first study describing the expression of a PUFA synthesizing enzyme in non-seed lower plant without supplying the exogenous fatty acid. © 2010 Elsevier Ltd. All rights reserved. |
author2 |
Faculty of Pharmaceutical Sciences |
author_facet |
Faculty of Pharmaceutical Sciences Songsri Kaewsuwan Nantavan Bunyapraphatsara David J. Cove Ralph S. Quatrano Pichit Chodok |
format |
Article |
author |
Songsri Kaewsuwan Nantavan Bunyapraphatsara David J. Cove Ralph S. Quatrano Pichit Chodok |
author_sort |
Songsri Kaewsuwan |
title |
High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ<sup>5</sup>-elongase gene |
title_short |
High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ<sup>5</sup>-elongase gene |
title_full |
High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ<sup>5</sup>-elongase gene |
title_fullStr |
High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ<sup>5</sup>-elongase gene |
title_full_unstemmed |
High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ<sup>5</sup>-elongase gene |
title_sort |
high level production of adrenic acid in physcomitrella patens using the algae pavlova sp. δ<sup>5</sup>-elongase gene |
publishDate |
2018 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/28896 |
_version_ |
1763494316320227328 |