Prenatal stress increased Snk Polo-like kinase 2, SCF β-TrCP ubiquitin ligase and ubiquitination of SPAR in the hippocampus of the offspring at adulthood

Exposure to excessive glucocorticoids during fetal development period contributes to later life psychopathology. Prenatal stress decreases dendritic spine density and impair LTP in the hippocampus of rat pups, however, the mechanisms regulating these changes are still unclear. Glutamatereceptors are...

Full description

Saved in:
Bibliographic Details
Main Authors: Naunchan Chutabhakdikul, Pornprom Surakul
Other Authors: Mahidol University
Format: Article
Published: 2018
Subjects:
Online Access:https://repository.li.mahidol.ac.th/handle/123456789/31174
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Mahidol University
id th-mahidol.31174
record_format dspace
spelling th-mahidol.311742018-10-19T12:41:00Z Prenatal stress increased Snk Polo-like kinase 2, SCF β-TrCP ubiquitin ligase and ubiquitination of SPAR in the hippocampus of the offspring at adulthood Naunchan Chutabhakdikul Pornprom Surakul Mahidol University Burapha University Biochemistry, Genetics and Molecular Biology Neuroscience Exposure to excessive glucocorticoids during fetal development period contributes to later life psychopathology. Prenatal stress decreases dendritic spine density and impair LTP in the hippocampus of rat pups, however, the mechanisms regulating these changes are still unclear. Glutamatereceptors are localized in the postsynaptic density. PSD-95 is a postsynaptic scaffolding protein that plays a role in synaptic maturation and regulation of the synaptic strength and plasticity. PSD-95 interacts with other proteins to form the protein networks that promote dendritic spine formation. The present study investigated the effect of prenatal stress on the levels of scaffolding proteins of NMDA receptor in the hippocampus in order to explain how prenatal stress alters the amount of NMDA receptor in the pups' brain. Pregnant rats were randomly assigned to either the prenatal stress (PS) or the control group (C). The pregnant rats in the PS group were restrained in a plexiglas restrainer for 4. h/day during the GD 14-21. Control rats were left undisturbed for the duration of their pregnancies. The amount of PSD-95, SPAR, NR2A and NR2B, as well as the levels of Snk Polo-like kinase 2 and the SCF β-TrCP ubiquitin ligase were measured in the hippocampus of the offspring. The results show that prenatal stress induces a reduction in the amount of NR2B and NR2A subunits in the hippocampus of rat pups, parallel to the decrease in PSD-95 and SPAR at P40 and P60. Moreover, prenatal stress increases Snk and β-TrCP in the hippocampus of rat pups, and the timing correlates with the decrease of SPAR and PSD-95. Prenatal stress also induces a significantly increases in the level of ubiquitinated SPAR in the hippocampus of rat pups at adulthood. The results suggest that degradation of SPAR via UPS system may contribute to the loss of PSD-95 and NMDA receptor subunits in the hippocampus of rat pups at adulthood. In conclusion, the present work demonstrates that the developing brain is critically influenced by glucocorticoids, especially during pre- and early postnatal period, which can have long-term effects on brain development. In addition, an involvement of the UPS system in the prenatal stress model has led to a greater understanding of the effects of prenatal stress later on in life. © 2013 ISDN. 2018-10-19T04:34:35Z 2018-10-19T04:34:35Z 2013-11-01 Article International Journal of Developmental Neuroscience. Vol.31, No.7 (2013), 560-567 10.1016/j.ijdevneu.2013.06.011 1873474X 07365748 2-s2.0-84880942830 https://repository.li.mahidol.ac.th/handle/123456789/31174 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84880942830&origin=inward
institution Mahidol University
building Mahidol University Library
continent Asia
country Thailand
Thailand
content_provider Mahidol University Library
collection Mahidol University Institutional Repository
topic Biochemistry, Genetics and Molecular Biology
Neuroscience
spellingShingle Biochemistry, Genetics and Molecular Biology
Neuroscience
Naunchan Chutabhakdikul
Pornprom Surakul
Prenatal stress increased Snk Polo-like kinase 2, SCF β-TrCP ubiquitin ligase and ubiquitination of SPAR in the hippocampus of the offspring at adulthood
description Exposure to excessive glucocorticoids during fetal development period contributes to later life psychopathology. Prenatal stress decreases dendritic spine density and impair LTP in the hippocampus of rat pups, however, the mechanisms regulating these changes are still unclear. Glutamatereceptors are localized in the postsynaptic density. PSD-95 is a postsynaptic scaffolding protein that plays a role in synaptic maturation and regulation of the synaptic strength and plasticity. PSD-95 interacts with other proteins to form the protein networks that promote dendritic spine formation. The present study investigated the effect of prenatal stress on the levels of scaffolding proteins of NMDA receptor in the hippocampus in order to explain how prenatal stress alters the amount of NMDA receptor in the pups' brain. Pregnant rats were randomly assigned to either the prenatal stress (PS) or the control group (C). The pregnant rats in the PS group were restrained in a plexiglas restrainer for 4. h/day during the GD 14-21. Control rats were left undisturbed for the duration of their pregnancies. The amount of PSD-95, SPAR, NR2A and NR2B, as well as the levels of Snk Polo-like kinase 2 and the SCF β-TrCP ubiquitin ligase were measured in the hippocampus of the offspring. The results show that prenatal stress induces a reduction in the amount of NR2B and NR2A subunits in the hippocampus of rat pups, parallel to the decrease in PSD-95 and SPAR at P40 and P60. Moreover, prenatal stress increases Snk and β-TrCP in the hippocampus of rat pups, and the timing correlates with the decrease of SPAR and PSD-95. Prenatal stress also induces a significantly increases in the level of ubiquitinated SPAR in the hippocampus of rat pups at adulthood. The results suggest that degradation of SPAR via UPS system may contribute to the loss of PSD-95 and NMDA receptor subunits in the hippocampus of rat pups at adulthood. In conclusion, the present work demonstrates that the developing brain is critically influenced by glucocorticoids, especially during pre- and early postnatal period, which can have long-term effects on brain development. In addition, an involvement of the UPS system in the prenatal stress model has led to a greater understanding of the effects of prenatal stress later on in life. © 2013 ISDN.
author2 Mahidol University
author_facet Mahidol University
Naunchan Chutabhakdikul
Pornprom Surakul
format Article
author Naunchan Chutabhakdikul
Pornprom Surakul
author_sort Naunchan Chutabhakdikul
title Prenatal stress increased Snk Polo-like kinase 2, SCF β-TrCP ubiquitin ligase and ubiquitination of SPAR in the hippocampus of the offspring at adulthood
title_short Prenatal stress increased Snk Polo-like kinase 2, SCF β-TrCP ubiquitin ligase and ubiquitination of SPAR in the hippocampus of the offspring at adulthood
title_full Prenatal stress increased Snk Polo-like kinase 2, SCF β-TrCP ubiquitin ligase and ubiquitination of SPAR in the hippocampus of the offspring at adulthood
title_fullStr Prenatal stress increased Snk Polo-like kinase 2, SCF β-TrCP ubiquitin ligase and ubiquitination of SPAR in the hippocampus of the offspring at adulthood
title_full_unstemmed Prenatal stress increased Snk Polo-like kinase 2, SCF β-TrCP ubiquitin ligase and ubiquitination of SPAR in the hippocampus of the offspring at adulthood
title_sort prenatal stress increased snk polo-like kinase 2, scf β-trcp ubiquitin ligase and ubiquitination of spar in the hippocampus of the offspring at adulthood
publishDate 2018
url https://repository.li.mahidol.ac.th/handle/123456789/31174
_version_ 1763495716993368064