Thin linearly viscoelastic Kelvin-Voigt plates
A mathematical model for thin viscoelastic Kelvin-Voigt plates is derived through an asymptotic analysis when the thickness goes to zero. The model involves Kirchhoff-Love kinematics, but the mechanical behavior is no longer of Kelvin-Voigt type: an additional term of delayed memory appears like in...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2018
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/31751 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
Summary: | A mathematical model for thin viscoelastic Kelvin-Voigt plates is derived through an asymptotic analysis when the thickness goes to zero. The model involves Kirchhoff-Love kinematics, but the mechanical behavior is no longer of Kelvin-Voigt type: an additional term of delayed memory appears like in homogenization. On propose un modèle mathématique pour les plaques minces viscoélastiques linéaires de Kelvin-Voigt par une étude asymptotique lorsque l'épaisseur tend vers zéro. Le modèle met en jeu une cinématique de Kirchhoff-Love, mais le comportement n'est plus de type Kelvin-Voigt : comme en homogénéisation, un terme additionnel de mémoire longue apparaît. © 2013 Académie des sciences. |
---|